[1] |
环境保护部,国土资源部.全国土壤污染状况调查公报[R].2014.
|
[2] |
Bolan N,Kunhikrishnan A,Thangarajan R,et al. Remediation of heavy metals(loid)contaminated soils to mobilize or to immobilize?[J]. Journal of Hazardous Materials,2014,266:141-166.
|
[3] |
Magdalena S,Daniel C W T,Yong S O,et al. A field study of bioavailable polycyclic aromatic hydrocarbons(PAHs)in sewage sludge and biochar amended soils[J]. Journal of Hazardous Materials,2018,349:27-34.
|
[4] |
Maria I S G,Cheryl M,Ander Q A,et al. Assessing biochar applications and repeated Brassica juncea L. production cycles to remediate Cu contaminated soil[J]. Chemosphere,2018,201:278-285.
|
[5] |
肖然.生物炭的制备及其对养分保留和重金属钝化的潜力研究[D].咸阳:西北农林科技大学,2017.
|
[6] |
刘国成.生物炭对水体和土壤环境中重金属铅的固持[D].青岛:中国海洋大学,2014.
|
[7] |
Harvery O R,Herbert B E,Rhue R D,et al. Metal interactions at the biochar-water interface:energetics and structure-sorption relationships elucidated by flow adsorption microcalorimety[J].Environmental Science&Technology,2011,45(13):5550-5556.
|
[8] |
李力,陆宇超,刘娅,等.玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J].农业环境科学学报,2012,31(11):2277-2283.
|
[9] |
王棋,王斌伟,谈广才,等.生物炭对Cu(Ⅱ)、Pb(Ⅱ)、Ni(Ⅱ)和Cd(Ⅱ)的单一及竞争吸附研究[J].北京大学学报(自然科学版),2017,53(6):1122-1132.
|
[10] |
Lu H L,Zhang W H,Yang Y X,et al. Relative distribution of Pb2+sorption mechanisms by sludge-derived biochar[J]. Water Research,2012,46(3):854-862.
|
[11] |
韩鲁佳,李彦霏,刘贤,等.生物炭吸附水体中重金属机理与工艺研究进展[J].农业机械学报,2017,48(11):1-11.
|
[12] |
Zhang W H,Zheng J,Zheng P P,et al. Sludge-derived biochar for arsenic(Ⅲ)immobilization:effects of solution chemistry on sorption behavior[J]. Journal of Environmental Quality,2015,44(4):1119.
|
[13] |
Yin D X,Wang X,Chen C,et al. Varying effect of biochar on Cd,Pb and As mobility in a multi-metal contaminated paddy soil[J]. Chemosphere,2016,152:196-206.
|
[14] |
Trakal L,Veselska V,Safarik I,et al. Lead and cadmium sorption mechanisms on magnetically modified biochars[J]. Bioresource Technology,2016,203:318-324.
|
[15] |
Wanger A,Kaupenjohann M,Hu Y,et al. Biochar-induced formation of Zn-P phases in former sewage field soils studied by PK-edge XANES spectroscopy[J]. Journal of Plant Nutrition and Soil Science,2015,178(4):582-585.
|
[16] |
Cao X D,Ma L N,Gao B,et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science&Technology,2009,43(9):3285-3291.
|
[17] |
Xu X Y,Zhao Y H,Sima J K,et al. Indispensable role of biochar-inherent mineral constituents in its environmental applications:a review[J]. Bioresource Technology,2017,241:887-899.
|
[18] |
Dong X L,Ma L Q,Li Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. Journal of Hazardous Materials,2011,190:909-915.
|
[19] |
Zhang W H,Mao S Y,Chen H,et al. Pb(Ⅱ)and Cr(Ⅵ)sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions[J]. Bioresource Technology,2013,147:545-552.
|
[20] |
Zhou L,Liu Y G,Liu S B,et al. Investigation of the adsorptionreduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures[J]. Bioresource Technology,2016,218:351-359.
|
[21] |
Pan J,Jiang J,Xu R. Adsorption of Cr(Ⅲ)from acidic solutions by crop straw derived biochars[J]. Journal of Environmental Sciences,2013,25(10):1957-1965.
|
[22] |
Tang J,Zhu W,Kookana R,et al. Characteristics of biochar and its application in remediation of contaminated soil[J]. Journal of Bioscience and Bioengineering,2013,116(6):653-659.
|
[23] |
尚美荣.氧化石墨烯修饰生物炭的制备及对Cr6+的吸附机理研究[D].长沙:湖南大学,2017.
|
[24] |
Wang M C,Sheng G D,Qiu Y P. A novel manganese-oxide/biochar composite for efficient removal of lead(Ⅱ)from aqueous solutions[J]. International Journal of Environmental Science and Technology,2015,12:1719-1726.
|
[25] |
Wang H Y,Gao B,Wang S S,et al. Removal of Pb(Ⅱ),Cu(Ⅱ)and Cd(Ⅱ)from aqueous solutions by biochar derived from KMnO4treated hickory wood[J]. Bioresource Technology,2015,197:356-362.
|
[26] |
佟雪娇.生物质炭对水体/红壤中Cu(Ⅱ)的去除和固定作用[D].南京:南京农业大学,2011.
|
[27] |
Bian R J,Joseph S,Cui L Q,et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials,2014,272:121-128.
|
[28] |
Wu P,Cui P X, Fang G D, et al. Biochar decreased the bioavailability of Zn to rice and wheat grains:insights from microscopic to macroscopic scales[J]. Science of the Total Environment,2018,621:160-167.
|
[29] |
Egene C E,Pouche R V,Ok Y S,et al. Impact of organic amendments(biochar,compost and peat)on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years[J]. Science of the Total Environment,2018,626:195-202.
|
[30] |
Nie C R,Yang X,Niazi N K,et al. Impact of sugarcane bagassederived biochar on heavy metal availability and microbial activity:a field study[J]. Chemosphere,2018,200:274-282.
|
[31] |
Shen Z G,Soma. M,Wang F,et al. Long-term impact of biochar on the immobilisation of nickel(Ⅱ)and zinc(Ⅱ)and the revegetation of a contaminated site[J]. Science of the Total Environment,2016,542:771-776.
|
[32] |
Chen D,Guo H,Li R Y,et al. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice:a field study over four rice seasons in Hunan,China[J]. Science of the Total Environment,2016,541:1489-1498.
|
[33] |
Bian R J,Chen D,Liu L Q,et al. Biochar soil amendment as a solution to prevent Cd-tainted rice from China:results from a cross-site field experiment[J]. Ecological Engineering,2013,58:378-383.
|
[34] |
Bian R J, Li L Q,Bao D D, et al. Cd immobilization in acontaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar[J].Environmental Science and Pollution Research,2016,23:10028-10036.
|
[35] |
Cui L Q,Pan G X,Li L Q,et al. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil:a five-year field experiment[J]. Ecological Engineering,2016,93:1-8.
|
[36] |
罗惠莉,王宇霖,周思,等.生物炭基调理剂对水稻镉吸收的影响[J].环境工程学报,2018,12(4):1190-1197.
|
[37] |
罗惠莉,周思,周静如,等.生物炭基调理剂对土壤镉生物有效性的影响[J].湖南农业科学,2018(10):48-51,55.
|
[38] |
胡雪芳,田志清,梁亮,等.不同改良剂对铅镉污染农田水稻重金属积累和产量影响的比较分析[J].环境科学,2018,39(7):3409-3417.
|
[39] |
李衍亮,黄玉芬,魏岚,等.施用生物炭对重金属污染农田土壤改良及玉米生长的影响[J].农业环境科学学报,2017,36(11):2233-2239.
|
[40] |
刘旭东,张润花,李志国,等.生物炭对设施栽培土壤重金属Cd形态变化的影响[J].中国农学通报,2016,32(15):125-129.
|
[41] |
谢亚萍,张琳琳,郅惠博,等.稻壳生物炭与肥料配施对稻田镉铅铬砷的钝化与肥效的影响[J].复旦学报(自然科学版),2017,56(2):228-232.
|
[42] |
王期凯,郭文娟,孙国红,等.生物炭与肥料复配对土壤重金属镉污染钝化修复效应[J].农业资源与环境学报,2015,32(6):583-589.
|
[43] |
周金波,汪峰,金树权,等.不同材料生物炭对镉污染土壤修复和青菜镉吸收的影响[J].浙江农业科学,2017,58(9):1559-1560.
|
[44] |
Tahir A,Munammad R,Shafaqat A,et al. Effect of biochar on cadmium bioavailability and uptake in wheat(Triticum aestivum L.)grown in a soil with aged contamination[J]. Ecotoxicology and Environmental Safety,2017,140:37-47.
|
[45] |
Wu P,Cui P X,Fang G D, et al. Biochar decreased the bioavailability of Zn to rice and wheat grains:insights from microscopic to macroscopic scales[J]. Science of the Total Environment,2018,621:160-167.
|
[46] |
Oan J M. Pyrolysis for biochar purposes:a review to establish current knowledge gaps and research needs[J]. Environmental Science&Technology,2012,46:7939-7954.
|
[47] |
Jensen P A,Frandsen F J,Dam-johansen K,et al. Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis[J]. Energy Fuels,2002,14(6):1280-1285.
|
[48] |
Bridgwater A V,Toft A J,Brammer J G. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion[J]. Renewable and Sustainable Energy Reviews,2002,6(3):181-248.
|
[49] |
Sebastian M, Bruno G, Peter Q. Technical, economical and climate-related aspects of biochar production technologies:a literature review[J]. Environmental Science&Technology,2011,45(22):9473-9483.
|
[50] |
姜志翔.生物炭技术缓解温室气体排放的潜力评估[D].青岛:中国海洋大学,2013.
|
[1] | XIE Chengcheng, XU Ke. ECOLOGICAL PROCESS OF WASTEWATER REGENERATION AND RECYCLING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 24-28. doi: 10.13205/j.hjgc.202401004 |
[2] | LIANG Lichen, YAN Xiaofei, WANG Lili, JIANG Hao, XU Yuanshun. SOIL HEAVY METAL POLLUTION CHARACTERISTICS AND HEALTH RISK ASSESSMENT OF A SIMPLE DOMESTIC GARBAGE LANDFILL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 177-187. doi: 10.13205/j.hjgc.202410021 |
[3] | HUANG Kaiwen, MA Zhen, SHAN Junyue, ZHANG Zhenming, WANG Xingfu, HUANG Xianfei. SPECTRAL CHARACTERISTICS AND SOURCE ANALYSIS OF SOIL DISSOLVED ORGANIC MATTER IN KARST MOUNTAINOUS AREA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 115-124. doi: 10.13205/j.hjgc.202305016 |
[4] | CHAO Zhu, XIA Peng, SI Jingyi, JIN Qi, BAI Yingchen, TAN Weiqiang. PRELIMINARY STUDY ON WATER QUALITY CRITERIA AND ECOLOGICAL RISK ASSESSMENT OF CARBAMAZEPINE IN FRESHWATER IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 170-177. doi: 10.13205/j.hjgc.202304024 |
[5] | ZHOU Ziyan, HUANG Xiang, GU Jinchuan, XUE Jia, WU Yi, YONG Yi. PASSIVATION OF ZINC, LEAD AND CADMIUM CONTAMINATED SOIL BY INORGANIC SALT MODIFIED BENTONITE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 150-158. doi: 10.13205/j.hjgc.202307021 |
[6] | CHEN Xuejuan, GAO Fang, WANG Qing, PANG Bo, XIE Yiliang, CUI Baoshan, YUE Xiupeng, SONG Jianbin. DISTRIBUTION CHARACTERISTICS AND POTENTIAL RISK OF HEAVY METALS IN WETLAND FRESHWATER RESTORATION AREA OF THE YELLOW RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 232-239. doi: 10.13205/j.hjgc.202301028 |
[7] | ZHANG Yibing, LIANG Yiqun, ZHANG Yuan, FANG Yinxiang, NIU Hongya, FAN Jingsen. SOURCE APPORTIONMENT AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN PM2.5 IN THE FENGFENG MINING AREA IN 2017—2019[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 242-250. doi: 10.13205/j.hjgc.202308031 |
[8] | CUI Can, REN Fumin, HU Shuxin, JIA Jinming, MA Li, SI Han, GUO Zhanghong, LU Tong, LIU Junshi, LIU Guotao, ZHANG Boyu. ENVIRONMENTAL CONTAMINATION RISK ANALYSIS OF CONSTRUCTION WASTE AND ITS RECYCLED PRODUCTS IN SHANGQIU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 191-196,149. doi: 10.13205/j.hjgc.202208027 |
[9] | XIAO Han, HAN Zhi-wei, XIONG Jia, LUO Guang-fei, TIAN Yu-tong, YANG Miao. BIOAVAILABILITY AND ECOLOGICAL RISK ASSESSMENT OF Sb AND As IN TAILINGS OF QINGLONG ANTIMONY MINE IN GUIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 123-132. doi: 10.13205/j.hjgc.202205018 |
[10] | REN Jun, WANG Yirong, REN Hanru, TONG Yunlong, WANG Tongyu, TAO Ling. STABILIZATION REMEDIATION OF Cd-POLLUTED SOILS USING ATTALPULGITE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 123-131. doi: DOI:10.13205/j.hjgc.202207018 |
[11] | LI Huaxiang, ZHAO Xiujun, LIU Yinghua, LUO Zhiji. SPATIAL DISTRIBUTION AND RISK ASSESSMENT OF TUNGSTEN POLLUTION OF SOIL IN A SMELTING SITE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 141-147. doi: 10.13205/j.hjgc.202201021 |
[12] | MENG Tingting, LIU Jinbao, DONG Hao, WANG Bo, ZHANG Guojian. SOIL HEAVY METAL POLLUTION AND ECOLOGICAL RISK ASSESSMENT OF URBAN GREEN LAND UNDER DIFFERENT MANAGEMENT METHODS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 217-223. doi: 10.13205/j.hjgc.202212029 |
[13] | ZHOU Ying, WANG Xue-mei, JIANG Yu-zhuo, ZHAO Yun-feng, JI Hong-bing. SPECIATION AND ECOLOGICAL RISK ASSESSMENT OF ARSENIC AND MERCURY IN SOIL AROUND A GOLD MINING AREA IN PINGGU DISTRICT, BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 203-210,164. doi: 10.13205/j.hjgc.202108028 |
[14] | MA Tao, SONG Jiang-min, LIU Qun-qun, SHENG Yan-qing. COMPARISON OF ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN DREDGED SEDIMENT TREATED BY DIFFERENT METHODS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 141-146,152. doi: 10.13205/j.hjgc.202102023 |
[15] | TANG Chuan-wu, LIU Li-heng, HUANG Rong, HE Dong-wei. EFFECT OF PREPARATION PROCESS ON SPECIATION DISTRIBUTION AND ECOLOGICAL RISK OF Zn, Cu AND Pb IN nZVI/SLUDGE BASED BIOCHARS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 216-221. doi: 10.13205/j.hjgc.202010034 |
[16] | ZHOU Li-wei, WANG Hang, LIU Yang-sheng. EFFECT OF ELECTRODE-ORIENTATED ELECTROKINETIC ENHANCEMENT ON PHYTOREMEDIATION ON ARSENIC CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 228-233. doi: 10.13205/j.hjgc.202010036 |
[17] | LU Xiu-guo, WU Jin-jin, ZHENG Yu-jia. PASSIVATION OF CADMIUM IN SOIL BY WALNUT SHELL BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 196-202. doi: 10.13205/j.hjgc.202011032 |
[18] | ELI Anwar, EZIZ Mamattursun, JIN Wan-gui, LI Xin-guo. ENVIRONMENTAL CAPACITY OF HEAVY METALS IN FARMLAND SOILS IN YANQI BASIN, XINJIANG[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 168-173. doi: 10.13205/j.hjgc.202003028 |
[20] | Fan Shuanxi. POLLUTION AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN SOIL AROUND A SMELTER IN CHANGQING TOWN OF BAOJI CITY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 121-127. doi: 10.13205/j.hjgc.201504026 |