Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XU Zi-yang, MO Sheng-peng, FU Ming-li, REN Quan-ming, ZHANG Ming-yuan, FAN Jie, XIONG Ju-xia, YE Dai-qi. APPLICATION AND DEVELOPMENT TREND OF RARE EARTH MATERIALS IN DEGRADATION OF VOLATILE ORGANIC WASTE GAS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 1-12,36. doi: 10.13205/j.hjgc.202001001
Citation: XU Zi-yang, MO Sheng-peng, FU Ming-li, REN Quan-ming, ZHANG Ming-yuan, FAN Jie, XIONG Ju-xia, YE Dai-qi. APPLICATION AND DEVELOPMENT TREND OF RARE EARTH MATERIALS IN DEGRADATION OF VOLATILE ORGANIC WASTE GAS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 1-12,36. doi: 10.13205/j.hjgc.202001001

APPLICATION AND DEVELOPMENT TREND OF RARE EARTH MATERIALS IN DEGRADATION OF VOLATILE ORGANIC WASTE GAS

doi: 10.13205/j.hjgc.202001001
  • Received Date: 2019-12-01
  • Rare earth materials are widely used in the field of air pollution control due to their rich hydroxyl groups, surface lattice defects and high-temperature stability, combined with their strong VOCs affinity and excellent oxygen storage and release capabilities. Recent studies have found that some rare earth-based materials are better than noble metal catalysts in the treatment of organic waste gases, and have explored in a wide range of prospects in practical engineering applications. Based on the literature and engineering investigations, the current status of rare earth-based materials in the fields of catalysis, adsorption, and practical engineering at home and abroad is reviewed. The advantages of rare earth materials and the problems they are currently facing are analyzed. The development trends of rare earth materials at home and abroad are analyzed and predicted from the perspective of adsorption, catalysis, etc. At the same time, the key issues and solutions in development are pointed out in accordance with China's current national conditions, in order to provide references for the future development of rare earth materials in the field of organic waste gas treatment.
  • KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs)-A review [J]. Atmospheric Environment, 2016, 140: 117-134.
    MELLOUKI A, WALLINGTON T J, CHEN J. Atmospheric Chemistry of Oxygenated Volatile Organic Compounds: impacts on Air Quality and Climate [J]. Chemical Reviews, 2015, 115(10): 3984-4014.
    邵敏, 董东. 我国大气挥发性有机物污染与控制[J]. 环境保护, 2013, 41(5): 25-28.
    魏巍. 中国人为源挥发性有机化合物的排放现状及未来趋势[D]:北京:清华大学, 2009.
    BOLTIC Z, RUZIC N, JOVANOVIC M, et al. Cleaner production aspects of tablet coating process in pharmaceutical industry: problem of VOCs emission [J]. Journal of Cleaner Production, 2013, 44: 123-132.
    章旭明. 低温等离子体净化处理挥发性有机气体技术研究[D]. 杭州:浙江大学, 2011.
    孙健, 戴维杰, 肖伟豪, 等. 挥发性有机物吸附材料研究进展[J]. 现代化工, 2017, 37(7): 58-62.
    RUIZ-FERNÁNDEZ M, ALEXANDRE-FRANCO M, FERNÁNDEZ-GONZÁLEZ C, et al. Development of activated carbon from vine shoots by physical and chemical activation methods. Some insight into activation mechanisms [J]. Adsorption, 2011, 17(3): 621-629.
    牛茜, 李兵, 徐校良, 等. 催化燃烧法处理挥发性有机化合物研究进展[J]. 现代化工, 2013, 33(11): 19-23.
    PENG R, LI S, SUN X, et al. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts [J]. Applied Catalysis B: Environmental, 2018, 220: 462-470.
    JIANG Y, GAO J, ZHANG Q, et al. Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template [J]. Chemical Engineering Journal, 2019, 371: 78-87.
    ZHANG Y, ZHANG H, XU Y, et al. Europium doped nanocrystalline titanium dioxide: Preparation, phase transformation and photocatalytic properties [J]. Journal of Materials Chemistry, 2003, 13(9): 2261-2265.
    RAO G R, FORNASIERO P, MONTE R D, et al. Reduction of NO over partially reduced metal-loaded CeO2-ZrO2 solid solutions [J]. Journal of Catalysis, 1996, 162(1): 1-9.
    HU F, PENG Y, CHEN J, et al. Low content of CoOx supported on nanocrystalline CeO2 for toluene combustion: the importance of interfaces between active sites and supports [J]. Applied Catalysis B: Environmental, 2019, 240: 329-336.
    OZAWA M, YUZURIHA H, HANEDA M. Total oxidation of toluene and oxygen storage capacity of zirconia-sol modified ceria zirconia [J]. Catalysis Communications, 2013, 30: 32-35.
    LÓPEZ J M, GILBANK A L, GARCÍA T, et al. The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation [J]. Applied Catalysis B: Environmental, 2015, 174-175: 403-412.
    ZHANG C, GUO Y, GUO Y, et al. LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene [J]. Applied Catalysis B: Environmental, 2014, 148/149: 490-498.
    GIRAUDON J M, ELHACHIMI A, WYRWALSKI F, et al. Studies of the activation process over Pd perovskite-type oxides used for catalytic oxidation of toluene [J]. Applied Catalysis B, Environmental, 2007, 75(3): 157-166.
    SHAH P M, DAY A N, DAVIES T E, et al. Mechanochemical preparation of ceria-zirconia catalysts for the total oxidation of propane and naphthalene Volatile Organic Compounds [J]. Applied Catalysis B: Environmental, 2019, 253: 331-340.
    WANG Z, LI S, XIE S, et al. Supported ultralow loading Pt catalysts with high H2O-, CO2-, and SO2-resistance for acetone removal [J]. Applied Catalysis A, General, 2019, 579: 106-115.
    FUKU K, GOTO M, SAKANO T, et al. Efficient degradation of CO and acetaldehyde using nano-sized Pt catalysts supported on CeO2 and CeO2/ZSM-5 composite [J]. Catalysis Today, 2013, 201(1): 57-61.
    FIORENZA R, BELLARDITA M, PALMISANO L, et al. A comparison between photocatalytic and catalytic oxidation of 2-Propanol over Au/TiO2-CeO2 catalysts [J]. Journal of Molecular Catalysis A, Chemical, 2016, 415: 56-64.
    KAMINSKI P, ZIOLEK M. Surface and catalytic properties of Ce-, Zr-, Au-, Cu-modified SBA-15[J]. Journal of Catalysis, 2014, 312: 249-262.
    魏延志, 陈彦模, 张瑜,等. 稀土在高聚物改性中的应用[J]. 高分子材料科学与工程, 2005, (1): 52-56.
    张本镔, 刘运权, 叶跃元. 活性炭制备及其活化机理研究进展[J]. 现代化工, 2014, 34(3): 34-39.
    KRAUS M, TROMMLER U, HOLZER F, et al. Competing adsorption of toluene and water on various zeolites [J]. Chemical Engineering Journal, 2018, 351: 356-363.
    SAINI K V, PIRES J O. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs [J]. Journal of Environmental Sciences, 2017, 55(5): 321-330.
    ANFRUNS A, MARTIN M J, MONTES-MORÁN M A. Removal of odourous VOCs using sludge-based adsorbents [J]. Chemical Engineering Journal, 2011, 166(3): 1022-1031.
    有机废气治理行业2015年发展综述[J]. 中国环保产业, 2016,(11): 5-13.
    ZHANG Z, HUANG J, XIA H, et al. Chlorinated volatile organic compound oxidation over SO42-/Fe2O3 catalysts [J]. Journal of Catalysis, 2018, 360: 277-289.
    FENG Z, REN Q, PENG R, et al. Effect of CeO2 morphologies on toluene catalytic combustion [J]. Catalysis Today, 2019, 332: 177-182.
    YANG H, DENG J, LIU Y, et al. Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2-Al2O3 for toluene oxidation [J]. Journal of Molecular Catalysis A, Chemical, 2016, 414: 9-18.
    LIN X, LI S, HE H, et al. Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation [J]. Applied Catalysis B: Environmental, 2018, 223: 91-102.
    HE H, LIN X, LI S, et al. The key surface species and oxygen vacancies in MnOx(0.4)—CeO2 toward repeated soot oxidation [J]. Applied Catalysis B: Environmental, 2018, 223: 134-142.
    DAI H, JING S, WANG H, et al. VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China [J]. Science of the Total Environment, 2017, 577: 73-83.
    MA X, LI L, LI H, et al. Porous carbon materials based on biomass for acetone adsorption: effect of surface chemistry and porous structure [J]. Applied Surface Science, 2018, 459: 657-664.
    QIN Y, WANG H, WANG Y, et al. Effect of Morphology and Pore Structure of SBA-15 on Toluene Dynamic Adsorption/Desorption Performance [J]. Procedia Environmental Sciences, 2013, 18:366-371.
    王丽萍, 陈建平. 大气污染控制工程[M]. 北京:中国矿业大学出版社,2012.
  • Relative Articles

    [1]MA Ruohan, LI Zhouyan, CAI Teng, NIU Chengxin, WANG Xueye, WANG Zhiwei. RESEARCH PROGRESS ON EMISSION AND CONTROL OF NON-CO2 GREENHOUSE GASES IN MUNICIPAL DRAINAGE NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 1-12. doi: 10.13205/j.hjgc.202411001
    [2]PAN Siyu, ZHANG Meiling. PREDICTION OF CARBON DIOXIDE EMISSION IN GANSU PROVINCE BASED ON BP NEURAL NETWORK AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 61-68,85. doi: 10.13205/j.hjgc.202307009
    [3]XIONG Wei. A HIGH ORBIT HIGH SPATIOTEMPORAL RESOLUTION ATMOSPHERIC CARBON DIOXIDE MONITOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 1-8,123. doi: 10.13205/j.hjgc.202310001
    [4]DONG Jin-chi, WENG Hui, PANG Ling-yun, CAI Bo-feng, LIU Hui, WANG Jin-nan, YANG Lu, XIA Chu-yu, CHEN Yang. MARGINAL ABATEMENT COST CURVES AND MITIGATION TECHNOLOGIES FOR PETROCHEMICAL AND CHEMICAL INDUSTRIES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 32-40. doi: 10.13205/j.hjgc.202110005
    [5]ZHU Shu-ying, LIU Hui, DONG Jin-chi, CAI Bo-feng, HE Jie, YANG Lu, XIA Chu-yu, TANG Ling. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST CURVES FOR CEMENT INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 15-22. doi: 10.13205/j.hjgc.202110003
    [6]LI Sa, LIN Qian-guo, LIANG Xi, LEI Ming, JIANG Meng-fei, YANG Yong-zhi. TECHNICAL AND ECONOMIC ANALYSIS OF CARBON DIOXIDE CAPTURE OF IRON AND STEEL BLAST FURNACE GAS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 117-122,175. doi: 10.13205/j.hjgc.202109017
    [7]ZHANG Li, WAN Xin, JIANG Han-ying, LI Xuan, XU Shao-dong, CAI Bo-feng. QUANTITATIVE EVALUATION ON THE STATUS OF CO2 EMISSIONS: PEAK PERIOD, PLATEAU PERIOD, AND DECLINE PERIOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 1-7. doi: 10.13205/j.hjgc.202110001
    [8]YANG Lu, YANG Xiu, LIU Hui, XIA Chu-yu, CAI Bo-feng, DONG Jin-chi, CHEN Yang. CARBON DIOXIDE EMISSION REDUCTION TECHNOLOGY SCREENING AND COST STUDY IN BUILDING SECTOR OF CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 41-49. doi: 10.13205/j.hjgc.202110006
    [9]ZANG Hong-kuan, YANG Wei-shan, ZHANG Jing, WU Peng-cheng, CAO Li-bin, XU Ye. RESEARCH ON CARBON DIOXIDE EMISSIONS PEAKING IN BEIJING-TIANJIN-HEBEI CITY AGGLOMERATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 19-24,77. doi: 10.13205/j.hjgc.202011004
  • Cited by

    Periodical cited type(12)

    1. 杨蕴琦,郝晋珉,张金懿,武子豪,孙逸航. 曲周县土地利用碳排放测算及情景预测研究. 中国农业大学学报. 2024(02): 160-175 .
    2. 杨晓君,高波,袁中原. 碳权衡视角下建筑全生命期减排有效性研究. 制冷与空调(四川). 2024(01): 61-68 .
    3. 胡晓娟. 某办公楼全生命周期建筑给排水碳排放计算. 江西建材. 2024(04): 303-305 .
    4. 路振伟,袁帅,阎俏,闫兰英. 基于全生命周期评价和能耗采集系统的建筑碳排放计算云平台的设计与实现. 建筑科学. 2024(06): 17-25+35 .
    5. 季忠洋,潘廷菊,严雯莲. 绿色建筑发展影响因素与对策研究. 长江技术经济. 2023(02): 102-109 .
    6. 陈超,薄艾,刘亚运,吴波玲,李超,张利建. 建筑碳排放量计算方法发展历程. 工程质量. 2023(05): 60-65 .
    7. 田涛,冯亚玲. 我国智慧城市试点政策碳减排效应研究. 长江论坛. 2023(03): 42-52 .
    8. 于雷,郭娜,任中杰,朱彦波,金秋. 医院建筑给排水系统碳排放量化分析. 安装. 2022(10): 84-85+90 .
    9. 蔡彬清,黄雨婧,黄新焕. 复合型环境规制下绿色建筑供给的演化博弈分析. 系统科学与数学. 2022(12): 3339-3354 .
    10. 赵丽,赵伟,潘绍中,杜昕,张建强. 碳减量影响下建筑业碳排放测算模型构建与实证. 河北建筑工程学院学报. 2022(04): 114-119 .
    11. 张童,李娜,史晓娜. 高强钢筋混凝土结构在温室节能减排中的作用研究. 环境科学与管理. 2021(02): 18-22 .
    12. 滕佳颖,许超,艾熙杰,杨涵,张连强. 绿色建筑可持续发展的驱动结构建模及策略. 土木工程与管理学报. 2019(06): 124-131+137 .

    Other cited types(25)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.7 %FULLTEXT: 13.7 %META: 86.3 %META: 86.3 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 27.2 %其他: 27.2 %其他: 0.8 %其他: 0.8 %Central District: 0.8 %Central District: 0.8 %上海: 3.2 %上海: 3.2 %东莞: 1.6 %东莞: 1.6 %亚特兰大: 3.2 %亚特兰大: 3.2 %北京: 8.8 %北京: 8.8 %十堰: 0.8 %十堰: 0.8 %南通: 0.8 %南通: 0.8 %商丘: 0.8 %商丘: 0.8 %天津: 3.2 %天津: 3.2 %太原: 0.8 %太原: 0.8 %成都: 0.8 %成都: 0.8 %扬州: 4.0 %扬州: 4.0 %杭州: 0.8 %杭州: 0.8 %武汉: 0.8 %武汉: 0.8 %温州: 0.8 %温州: 0.8 %漯河: 8.8 %漯河: 8.8 %焦作: 1.6 %焦作: 1.6 %芒廷维尤: 16.0 %芒廷维尤: 16.0 %芝加哥: 2.4 %芝加哥: 2.4 %苏州: 0.8 %苏州: 0.8 %西宁: 3.2 %西宁: 3.2 %贵阳: 0.8 %贵阳: 0.8 %邯郸: 0.8 %邯郸: 0.8 %郑州: 0.8 %郑州: 0.8 %重庆: 0.8 %重庆: 0.8 %锡林郭勒盟: 0.8 %锡林郭勒盟: 0.8 %长沙: 2.4 %长沙: 2.4 %青岛: 1.6 %青岛: 1.6 %其他其他Central District上海东莞亚特兰大北京十堰南通商丘天津太原成都扬州杭州武汉温州漯河焦作芒廷维尤芝加哥苏州西宁贵阳邯郸郑州重庆锡林郭勒盟长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (586) PDF downloads(25) Cited by(37)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return