Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Juan-juan, ZHANG Meng, CAI Song-cai, YU En-qi, CHEN Jing, JIA Hong-peng. LIGHT-DRIVEN THERMOCATALYSIS/PHOTO-THERMOCATALYSIS OF VOCs: RECENT ADVANCES AND FUTURE PERSPECTIVES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 13-20. doi: 10.13205/j.hjgc.202001002
Citation: LI Juan-juan, ZHANG Meng, CAI Song-cai, YU En-qi, CHEN Jing, JIA Hong-peng. LIGHT-DRIVEN THERMOCATALYSIS/PHOTO-THERMOCATALYSIS OF VOCs: RECENT ADVANCES AND FUTURE PERSPECTIVES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 13-20. doi: 10.13205/j.hjgc.202001002

LIGHT-DRIVEN THERMOCATALYSIS/PHOTO-THERMOCATALYSIS OF VOCs: RECENT ADVANCES AND FUTURE PERSPECTIVES

doi: 10.13205/j.hjgc.202001002
  • Received Date: 2019-11-25
  • Volatile organic compounds (VOCs) is one of the major contributors to air pollution. In particular, catalytic oxidation is generally considered as the most efficient way to entirely decompose the wide range of VOCs into harmless products of CO2 and H2O. This review summarizes recent progress of researches into various catalysts for the catalytic destruction of VOCs, and emphatically highlights the scientific understanding in the catalyst design and reaction mechanism of light-driven thermocatalysis/photo-thermocatalysis, based on the traditional thermal catalysis with high energy consumption and the photocatalysis with low quantum efficiency in VOCs purification. Since the direct conversion of renewable clean solar energy into thermal and chemical energy to drive catalytic reaction is highly desirable, this review also presents a broad perspective on the state of strategy research for light-driven photo-thermocatalysis and prospects for strategy research in the future.
  • GEORGE C, AMMANN M, D'ANNA B, et al. Heterogeneous photochemistry in the atmosphere [J]. Chemical Reviews, 2015, 115(10): 4218-4258.
    DAI C H, ZHOU Y Y, PENG H, et al. Current progress in remediation of chlorinated volatile organic compounds: a review [J]. Journal of Industrial and Engineering Chemistry, 2018, 62: 106-119.
    HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources [J]. Chemical Reviews, 2019, 119(7): 4471-4568.
    LIOTTA L F. Catalytic oxidation of volatile organic compounds on supported noble metals [J]. Applied Catalysis B-Environmental, 2010, 100(3/4): 403-412.
    LIU Y X, DENG J G, XIE S H, et al. Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts [J]. Chinese Journal of Catalysis, 2016, 37(8): 1193-1205.
    TANG W X, LIU G, LI D Y, et al. Design and synthesis of porous non-noble metal oxides for catalytic removal of VOCs [J]. Science China-Chemistry, 2015, 58(9): 1359-1366.
    CHEN J, JIANG M Z, XU W J, et al. Incorporating Mn cation as anchor to atomically disperse Pt on TiO2 for low-temperature removal of formaldehyde [J]. Applied Catalysis B-Environmental, 2019, 259: 118013-118023.
    LI H J, QI G S, TANA, ZHANG X J, et al. Low-temperature oxidation of ethanol over a Mn0.6Ce0.4O2 mixed oxide [J]. Applied Catalysis B-Environmental, 2011, 103(1): 54-61.
    NIU J R, DENG J G, LIU W, et al. Nanosized perovskite-type oxides La1-xSrxMO3-δ (M=CO, Mn; x=0, 0.4) for the catalytic removal of ethylacetate [J]. Catalysis Today, 2007, 126: 420-429.
    SEDJAME H J, FONTAINE C, LAFAYE G, et al. On the promoting effect of the addition of ceria to platinum based alumina catalysts for VOCs oxidation [J]. Applied Catalysis B-Environmental, 2014, 144: 233-242.
    HOU J T, LIU L L, LI Y Z, et al. Tuning the K+ concentration in the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation [J]. Environmental Science & Technology, 2013, 47(23): 13730-13736.
    CHEN X, CHEN X, CAI S C, et al. Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs [J]. Chemical Engineering Journal, 2018, 334: 768-779.
    CHEN J, CHEN X, XU W J, et al. Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene [J]. Chemical Engineering Journal, 2017, 330: 281-293.
    WANG X Y, KANG Q, LI D. Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts [J]. Applied Catalysis B-Environmental, 2009, 86: 166-175.
    DE RIVAS B, LOPEZ-FONSECA R, JIMENEZ-GONZALEZ C, et al. Synthesis, characterisation and catalytic performance of nanocrystalline Co3O4 for gas-phase chlorinated VOC abatement [J]. Journal of Catalysis, 2011, 281: 88-97.
    ARMAROLI N, BALZANI V. The future of energy supply: challenges and opportunities [J]. Angewandte Chemie-International Edition, 2007, 46: 52-66.
    LI J J, CAI S C, XU Z, et al. Solvothermal syntheses of Si and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light [J]. Journal of Hazardous Materials, 2017, 325: 261-270.
    LI J J, WENG B, CAI S C, et al. Efficient promotion of charge transfer and separation in hydrogenated TiO2/WO3 with rich surface-oxygen-vacancies for photodecomposition of gaseous toluene [J]. Journal of Hazardous Materials, 2018, 342: 661-669.
    WANG L Y, XU X C, WU S J, et al. Nonstoichiometric tungsten oxide residing in a 3D nitrogen doped carbon matrix, a composite photocatalyst for oxygen vacancy induced VOC degradation and H2 production [J]. Catalysis Science & Technology, 2018, 8: 1366-1374.
    WANG J M, XU X C, CAO F, et al. In situ fabrication of alpha-Fe2O3/CaFe2O4 p-n heterojunction with enhanced VOCs photodegradation activity [J]. Advanced Powder Technology, 2019, 30: 590-595.
    ZHANG Y H, TANG Z R, FU X Z, et al. Nanocomposite of Ag-AgBr-TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase [J]. Applied Catalysis B-Environmental, 2011, 106: 445-452.
    TRUC N T T, PHAM T D, THUAN D V, et al. Superior activity of Cu-NiWO4/g-C3N4 Z direct system for photocatalytic decomposition of VOCs in aerosol under visible light [J]. Journal of Alloys and Compounds, 2019, 798: 12-18.
    GAO W Q, ZHANG X F, SU X W, et al. Construction of bimetallic Pd-Ag enhanced AgBr/TiO2 hierarchical nanostructured photocatalytic hybrid capillary tubes and devices for continuous photocatalytic degradation of VOCs [J]. Chemical Engineering Journal, 2018, 346: 77-84.
    LIU H L, MA Y P, CHEN J Y, et al. Highly efficient visible-light-driven photocatalytic degradation of VOCs by CO2-assisted synthesized mesoporous carbon confined mixed-phase TiO2 nanocomposites derived from MOFs [J]. Applied Catalysis B-Environmental, 2019, 250: 337-346.
    HU Y, LI D Z, ZHENG Y,et al. BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene [J]. Applied Catalysis B-Environmental, 2011, 104: 30-36.
    DAO V D, SON L T, NGUYEN T D,et al. Superior visible light photocatalytic activity of g-C3N4/NiWO4 direct Z system for degradation of gaseous toluene [J]. Journal of Solid State Chemistry, 2019, 272: 62-68.
    CHEN X, CAI S C, YU E Q,et al. Photothermocatalytic performance of ACo2O4 type spinel with light-enhanced mobilizable active oxygen species for toluene oxidation [J]. Applied Surface Science, 2019, 484: 479-488.
    LI J J, CAI S C, YU E Q,et al. Efficient infrared light promoted degradation of volatile organic compounds over photo-thermal responsive Pt-rGO-TiO2 composites [J]. Applied Catalysis B-Environmental, 2018, 233: 260-271.
    LI J J, CAI S C, CHEN X, et al. Engineering rGO nanosheets-adsorption layer supported Pt nanoparticles to enhance photo-thermal catalytic activity under light irradiation [J]. Journal of Materials Chemistry A, 2019, 7: 11985-11995.
    MENG X G, LIU L Q, OUYANG S X,et al. Nanometals for Solar-to-Chemical Energy Conversion: from Semiconductor-Based Photocatalysis to Plasmon-Mediated Photocatalysis and Photo-Thermocatalysis [J]. Advanced Materials, 2016, 28: 6781-6803.
    CAI S C, LI J J, YU E Q, et al. Strong photothermal effect of plasmonic Pt nanoparticles for efficient degradation of volatile organic compounds under solar light irradiation [J]. ACS Applied Nano Materials, 2018, 1: 6368-6377
    HOU J T, LI Y Z, MAO M Y, et al. Full solar spectrum light driven thermocatalysis with extremely high efficiency on nanostructured Ce ion substituted OMS-2 catalyst for VOCs purification [J]. Nanoscale, 2015, 7(6): 2633-2640.
    HOU J T, LI Y Z, MAO M Y,et al. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation [J]. Nanoscale, 2014, 6(24): 15048-15058.
    LI J J, YU E Q, CAI S C, et al. Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light [J]. Applied Catalysis B-Environmental, 2019, 240: 141-152.
    XIE X, LI Y Z, YANG Y, CHEN C,et al. UV-Vis-IR driven thermocatalytic activity of OMS-2/SnO2 nanocomposite significantly enhanced by novel photoactivation and synergetic photocatalysis-thermocatalysis [J]. Applied Surface Science, 2018, 462: 590-597.
    LI Y, LAN L, SHI Z K, et al. Defects lead to a massive enhancement in the UV-Vis-IR driven thermocatalytic activity of Co3O4 mesoporous nanorods [J]. Journal of Materials Chemistry A, 2018, 6: 7194-7205.
    YANG Y, LI Y Z, MAO M Y, et al. UV-Visible-Infrared Light Driven Thermocatalysis for Environmental Purification on Ramsdellite MnO2 Hollow Spheres Considerably Promoted by a Novel Photoactivation [J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2350-2357.
    MAO M Y, LI Y Z, LV H Q, et al. Efficient UV-vis-IR light-driven thermocatalytic purification of benzene on a Pt/CeO2 nanocomposite significantly promoted by hot electron-induced photoactivation [J]. Environmental Science-Nano, 2017, 4: 373-384.
    LAN L, LI Y Z, ZENG M,et al. Efficient UV-vis-infrared light-driven catalytic abatement of benzene on amorphous manganese oxide supported on anatase TiO2 nanosheet with dominant {001} facets promoted by a photothermocatalytic synergetic effect [J]. Applied Catalysis B-Environmental, 2017, 203: 494-504.
    REN L, MAO M Y, LI Y Z,et al. Novel photothermocatalytic synergetic effect leads to high catalytic activity and excellent durability of anatase TiO2 nanosheets with dominant {001} facets for benzene abatement [J]. Applied Catalysis B-Environmental, 2016, 198: 303-310.
    CHEN J, LI Y Z, FANG S M, et al. UV-Vis-infrared light-driven thermocatalytic abatement of benzene on Fe doped OMS-2 nanorods enhanced by a novel photoactivation [J]. Chemical Engineering Journal, 2018, 332: 205-215.
    YANG Y, LI Y Z, ZHANG Q,et al. Novel photoactivation and solar-light-driven thermocatalysis on epsilon-MnO2 nanosheets lead to highly efficient catalytic abatement of ethyl acetate without acetaldehyde as unfavorable by-product [J]. Journal of Materials Chemistry A, 2018, 6: 14195-14206.
    ZENG M, LI Y Z, MAO M Y, et al. Synergetic Effect between Photocatalysis on TiO2 and Thermocatalysis on CeO2 for Gas-Phase Oxidation of Benzene on TiO2/CeO2 Nanocomposites [J]. ACS Catalysis, 2015(5): 3278-3286.
    SHI Z K, LAN L, LI Y Z, et al. Co3O4/TiO2 Nanocomposite formation leads to improvement in ultraviolet-visible-infrared-driven thermocatalytic activity due to photoactivation and photocatalysis-thermocatalysis Synergetic Effect [J]. ACS Sustainable Chemistry & Engineering, 2018(6): 16503-16514.
    MA Y, LI Y Z, MAO M Y, et al. Synergetic effect between photocatalysis on TiO2 and solar light-driven thermocatalysis on MnOx for benzene purification on MnOx/TiO2 nanocomposites [J]. Journal of Materials Chemistry A, 2015(3): 5509-5516.
    ZHENG Y, WANG W, JIANG D,et al. Ultrathin mesoporous Co3O4 nanosheets with excellent photo-/thermo-catalytic activity [J]. Journal of Materials Chemistry A, 2015,4(1): 105-112.
    LI Y Z, HUANG J C, PENG T,et al. Photothermocatalytic synergetic effect leads to high efficient detoxification of benzene on TiO2 and Pt/TiO2 nanocomposite [J]. Chemcatchem, 2010,2(9): 1082-1087.
    ZOU N M, CHEN G Q, MAO X W,et al. Imaging catalytic hotspots on single plasmonic nanostructures via correlated super-resolution and electron microscopy [J]. ACS Nano, 2018(12): 5570-5579.
    TAN T H, SCOTT J, NG Y H, et al. Understanding plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold [J]. ACS Catalysis, 2016(6): 1870-1879.
    CHEN J Y, HE Z G, LI G Y,et al. Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene [J]. Applied Catalysis B-Environmental, 2017, 209: 146-154.
  • Relative Articles

    [1]WAN Jiguo, XU Li, WANG Yu. Effect of Ca/P ratio on catalytic oxidation of dichloromethane over Ru/hydroxyapatite catalysts[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 175-184. doi: 10.13205/j.hjgc.202501019
    [2]WANG Xiaowei, MIN Chaohui, SONG Jun, ZHANG Jinghua, ZHAO Hongbing, CAO Chen, ZHANG Chi, LIU Tianfu, LIU Jingyin, HUANG Xiaoli, CHEN Liang, LIU Xin. EMISSION CHARACTERISTICS AND WHOLE PROCESS CONTROL IMPLEMENTATION PATH FOR VOCs IN RAILWAY TRANSPORTATION INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 102-111. doi: 10.13205/j.hjgc.202410013
    [3]SHI Jianqiang, WANG Bing, CHEN Jianjun, WANG Jiancheng, LI Junhua. RESEARCH PROGRESS OF MERCURY OXIDATION CATALYSTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 229-239. doi: 10.13205/j.hjgc.202409022
    [4]ZHAO Puzhen, LIU Chu, HUANG Qianlin, LÜ Lu. FABRICATION OF NICKEL FOAM BASED MnO2 MONOLITHIC CATALYSTS AND ITS APPLICATION IN CATALYTIC ELIMINATION OF TOLUENE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 71-78,115. doi: 10.13205/j.hjgc.202304010
    [5]SHUAI Qifan, LU Jiangang, LI Jiansheng. ANALYSIS ON STRUCTURAL SIMULATION, OPTIMIZATION AND APPLICATION EFFECT OF A REGENERATIVE THERMAL OXIDIZER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 146-153. doi: 10.13205/j.hjgc.202202023
    [6]LIU Chengjian, FU Mingli, HUANG Daojian, QIN Hao, YU Yufan. APPLICATION OF A RAPID IDENTIFICATION SYSTEM OF ATMOSPHERIC ENVIRONMENTAL POLLUTION SOURCES IN AN ECONOMIC AND TECHNOLOGICAL DEVELOPMENT ZONE IN THE GUANGDONG-HONG KONG-MACAO GREATER BAY AREA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 172-178. doi: DOI:10.13205/j.hjgc.202207025
    [7]LIANG Baorui, WANG Bin, MA Zhiliang, LIU Junjie, XU Shuiyang, WEI Zhenqiang, ZHANG Hui. SIMULTANEOUS CATALYTIC PURIFICATION OF NOx AND O-DCB WITH SUPPORTED Mn HYDROTALCITE-LIKE STRUCTURE CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 8-13,126. doi: 10.13205/j.hjgc.202202002
    [8]LUO Ya-yue, LI Cui-qing, ZHANG Wei, ZHANG Chen, SONG Yong-ji, WANG Hong. RESEARCH PROGRESS IN CATALYSTS FOR SELECTIVE CATALYTIC OXIDATION OF NITRIC OXIDE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 101-105,88. doi: 10.13205/j.hjgc.202101015
    [9]FAN Hao, SHEN Zhen-xing, LU Jia-qi, CHANG Tian, HUANG Yu. THE ACTIVE SITES AND PERFORMANCE OF Mn1Cex/HZSM-5 CATALYST FOR FORMALDEHYDE REMOVAL AT ROOM TEMPERATURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 99-105. doi: 10.13205/j.hjgc.202106015
    [10]LI Hao, WANG Hao-nan, REN Fei-peng, PENG Rui-chao. APPLICATION OF MANGANESE DIOXIDE NANOSPHERES IN ELECTRO-FENTON REACTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 26-31. doi: 10.13205/j.hjgc.202012005
    [11]LIU Jia-hong, LIU Sheng-nan, LIU Mao-hui, YUE Ya-yun, YANG Duo-kun, SUN Meng, LI Jing. INVENTORY AND CHARACTERISTICS OF SMALL-SCALE VOCs IN A DISTRICT OF TIANJIN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 188-194,200. doi: 10.13205/j.hjgc.202008031
    [12]XU Zun-zhu, LU Zhao-yang, ZHANG Ji-wen, SUN Yong-jia, GAO Shuang, YI Bin, WANG Teng-jiao, WANG Fei. APPLICATION STATUS OF INDUSTRIAL VOCs TREATMENT TECHNOLOGIES IN TYPICAL CITIES OF THE YANGTEZ RIVER DELTA REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 54-59. doi: 10.13205/j.hjgc.202001008
    [13]CAO Li, LIAN Zi, HUANG Xue-min. CATALYTIC PERFORMANCE OF TYPICAL VOCs OVER MnCeOx/ZEOLITE CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 48-53. doi: 10.13205/j.hjgc.202001007
    [14]XU Chen-chen, ZHANG Qi, XU Qi, YUAN Hai-yan. RESEARCH PROGRESS OF ORGANIC-INORGANIC PHOTOCATALYSTS FOR DEGRADING VOCs[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 28-36. doi: 10.13205/j.hjgc.202001004
    [18]Zhang Xiaoxu, Zhang Hongyu, Li Guoxue, . EFFECT OF ADDITIVE QUANTITY OF STALKS ON H2 S AND NH3 EMISSION DURING KITCHEN WASTE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 95-99. doi: 10.13205/j.hjgc.201501022
  • Cited by

    Periodical cited type(3)

    1. 靳苏娜,吕瑞亮. 非均相催化臭氧氧化处理工业废水的研究进展. 无机盐工业. 2024(03): 28-38 .
    2. 刘雪峰,郑春禹,滕洁,许霞. 固定化Cu_2O活化过硫酸盐降解水中4-氯酚. 常州大学学报(自然科学版). 2023(04): 52-60 .
    3. 肖超,张东国,张晓雪,牛远,袁英,汪洋,唐军,鹿豪杰,李娟. 抗坏血酸强化含水层介质Fenton降解PNP研究. 环境科学研究. 2021(12): 2907-2916 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.3 %FULLTEXT: 12.3 %META: 82.5 %META: 82.5 %PDF: 5.2 %PDF: 5.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.5 %其他: 11.5 %其他: 0.8 %其他: 0.8 %Central District: 0.4 %Central District: 0.4 %China: 0.1 %China: 0.1 %San Lorenzo: 0.1 %San Lorenzo: 0.1 %[]: 0.1 %[]: 0.1 %上海: 1.5 %上海: 1.5 %东莞: 6.7 %东莞: 6.7 %东营: 0.1 %东营: 0.1 %临汾: 0.3 %临汾: 0.3 %佛山: 0.3 %佛山: 0.3 %保定: 0.3 %保定: 0.3 %兰州: 0.3 %兰州: 0.3 %北京: 5.5 %北京: 5.5 %十堰: 0.6 %十堰: 0.6 %南京: 2.8 %南京: 2.8 %南充: 0.1 %南充: 0.1 %南昌: 2.1 %南昌: 2.1 %南通: 0.3 %南通: 0.3 %厦门: 0.6 %厦门: 0.6 %台州: 0.4 %台州: 0.4 %吉安: 0.1 %吉安: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.6 %哈尔滨: 0.6 %嘉兴: 0.1 %嘉兴: 0.1 %大庆: 0.3 %大庆: 0.3 %天津: 1.1 %天津: 1.1 %太原: 0.4 %太原: 0.4 %安庆: 0.1 %安庆: 0.1 %安阳: 0.1 %安阳: 0.1 %宜昌: 0.6 %宜昌: 0.6 %宣城: 0.1 %宣城: 0.1 %常州: 0.3 %常州: 0.3 %常德: 0.1 %常德: 0.1 %广州: 3.2 %广州: 3.2 %张家口: 0.6 %张家口: 0.6 %徐州: 0.6 %徐州: 0.6 %惠州: 0.3 %惠州: 0.3 %成都: 1.3 %成都: 1.3 %扬州: 0.3 %扬州: 0.3 %拉贾斯坦邦: 0.1 %拉贾斯坦邦: 0.1 %无锡: 0.6 %无锡: 0.6 %昆明: 0.1 %昆明: 0.1 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.5 %杭州: 1.5 %桂林: 0.6 %桂林: 0.6 %武汉: 1.1 %武汉: 1.1 %汕头: 0.1 %汕头: 0.1 %江门: 0.1 %江门: 0.1 %沈阳: 0.6 %沈阳: 0.6 %泉州: 1.4 %泉州: 1.4 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.7 %济南: 0.7 %济源: 0.1 %济源: 0.1 %海东: 2.4 %海东: 2.4 %淄博: 0.6 %淄博: 0.6 %深圳: 0.7 %深圳: 0.7 %温州: 0.4 %温州: 0.4 %湖州: 0.6 %湖州: 0.6 %湘潭: 0.1 %湘潭: 0.1 %湛江: 0.4 %湛江: 0.4 %漯河: 1.3 %漯河: 1.3 %焦作: 0.3 %焦作: 0.3 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.4 %福州: 0.4 %舟山: 0.3 %舟山: 0.3 %芒廷维尤: 18.3 %芒廷维尤: 18.3 %芝加哥: 3.6 %芝加哥: 3.6 %苏州: 0.7 %苏州: 0.7 %萍乡: 0.1 %萍乡: 0.1 %衢州: 0.6 %衢州: 0.6 %西宁: 7.3 %西宁: 7.3 %西安: 0.6 %西安: 0.6 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.4 %赣州: 0.4 %运城: 0.8 %运城: 0.8 %连云港: 0.8 %连云港: 0.8 %遵义: 0.1 %遵义: 0.1 %邢台: 0.3 %邢台: 0.3 %邯郸: 0.1 %邯郸: 0.1 %郑州: 2.8 %郑州: 2.8 %重庆: 0.1 %重庆: 0.1 %银川: 0.3 %银川: 0.3 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %雅安: 0.6 %雅安: 0.6 %青岛: 0.4 %青岛: 0.4 %其他其他Central DistrictChinaSan Lorenzo[]上海东莞东营临汾佛山保定兰州北京十堰南京南充南昌南通厦门台州吉安咸阳哈尔滨嘉兴大庆天津太原安庆安阳宜昌宣城常州常德广州张家口徐州惠州成都扬州拉贾斯坦邦无锡昆明晋城朝阳杭州桂林武汉汕头江门沈阳泉州洛阳济南济源海东淄博深圳温州湖州湘潭湛江漯河焦作石家庄福州舟山芒廷维尤芝加哥苏州萍乡衢州西宁西安贵阳赣州运城连云港遵义邢台邯郸郑州重庆银川长沙长治雅安青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (660) PDF downloads(104) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return