Citation: | XU Chen-chen, ZHANG Qi, XU Qi, YUAN Hai-yan. RESEARCH PROGRESS OF ORGANIC-INORGANIC PHOTOCATALYSTS FOR DEGRADING VOCs[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 28-36. doi: 10.13205/j.hjgc.202001004 |
熊海瑶, 阮大胜. 空气中挥发性有机物的污染来源及防治措施分析[J]. 科技经济导刊, 2019, 27(25): 115.
|
胡涛. 我国城市空气中挥发性有机物现状及管理[J]. 环境管理, 2019.
|
冯丽丽, 胡晓芳. 顶空固相微萃取/气相色谱-三重四极杆串联质谱法测定地表水与饮用水中的挥发性有机物[J]. 分析测试学报, 2019, 38(11): 1294-1300.
|
苏庆梅, 邢伯蕾, 梁桂廷. 我国大气中挥发性有机物监测与控制现状分析[J]. 节能检测, 2019,38(8): 89-90.
|
古丽君. 工业源VOCs污染治理问题及对策[J]. 环境与发展, 2019, 31(7): 38-39.
|
PARMAR G R, RAO N N. Emerging control technologies for volatile organic compounds[J]. Critical Reviews in Environmental Science and Technology, 2008, 39(1): 41-78.
|
VIZHEMEHR A K, HAGHIGHAT F. Modeling of gas-phase filter model for high-and low-challenge gas concentrations[J]. Building and Environment, 2014, 80: 192-203.
|
陈平, 陈俊. 挥发性有机化合物的污染控制[J]. 石油化工环境保护, 2006, 29(3): 20-23.
|
席劲瑛, 武俊良, 胡洪营, 等. 工业VOCs气体处理技术应用状况调查分析[J]. 中国环境科学, 2012, 32(11): 1955-1960.
|
田瑞丽. 可挥发性有机物的治理工艺分析[J]. 山西化工, 2019, 39(3): 203-204
,214.
|
TOMPKINS D T, ANDERSON M A. Evaluation of photocatalytic air cleaning capability: a literature review & engineering analysis[M]. ASHRAE, 2001, 43(14): 2229-2246.
|
QIAN X, YUE D, TIAN Z, et al. Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs[J]. Applied Catalysis B: Environmental, 2016, 193: 16-21.
|
韩雅琦,雷蕾,杨晨,等.黑磷纳米片光催化甲基橙降解机理[J/OL]. 应用生态学报[2019-11-18].10.13287/j.1001-9332.2020001.035. |
AUGUGLIARO V, BELLARDITA M, LODDO V, et al. Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 224-245.
|
LIU X, LIU Y, LU S, et al. Performance and mechanism into TiO2/Zeolite composites for sulfadiazine adsorption and photodegradation[J]. Chemical Engineering Journal, 2018, 350: 131-147.
|
HE W, SUN Y, JIANG G, et al. Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: photocatalysis mechanism and reaction pathway[J]. Applied Catalysis B: Environmental, 2018, 232: 340-347.
|
MAMAGHANI A H, HAGHIGHAT F, LEE C S. Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art[J]. Applied Catalysis B: Environmental, 2017, 203: 247-269.
|
ZHANG K, WANG J, JIANG W, et al. Self-assembled perylene diimide based supramolecular heterojunction with Bi2WO6 for efficient visible-light-driven photocatalysis[J]. Applied Catalysis B: Environmental, 2018, 232: 175-181.
|
KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews, 2009, 38(1): 253-278.
|
HAYASHI H, LIGHTCAP I V, TSUJIMOTO M, et al. Electron transfer cascade by organic/inorganic ternary compo-sites of porphyrin, zinc oxide nanoparticles, and reduced graphene oxide on a tin oxide electrode that exhibits efficient photocurrent generation[J]. Journal of the American Chemical Society, 2011,133(20): 7684-7687.
|
YANG X, QIN J, JIANG Y, et al. Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria[J]. Applied Catalysis B: Environmental, 2015, 166: 231-240.
|
HU Y, LI D, ZHENG Y, et al. BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene[J]. Applied Catalysis B: Environmental, 2011, 104(1/2): 30-36.
|
SANSOTERA M, KHEYLI S G M, BAGGIOLI A, et al. Absorption and photocatalytic degradation of VOCs by perfluorinated ionomeric coating with TiO2 nanopowders for air purification[J]. Chemical Engineering Journal, 2019, 361: 885-896.
|
ZHANG Y, TANG Z R, FU X, et al. Nanocomposite of Ag-AgBr-TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase[J]. Applied Catalysis B: Environmental, 2011, 106(3/4): 445-452.
|
钟娜, 汤莎莎, 余岩, 等. 核壳异质结催化剂BiOCl/F-TiO2可见光催化降解4-氯酚[J]. 环境污染与防治, 2019, 41(8): 876-881.
|
WANG L, GAO X, CHENG Y, et al. TiO2@MgAl-layered double hydroxide with enhanced photocatalytic activity towards degradation of gaseous toluene[J]. Journal of Photochemistry and Photobiology A: chemistry, 2019, 369: 44-53.
|
RAO Z, XIE X, WANG X, et al. Defect chemistry of Er3+-doped TiO2 and its photocatalytic activity for the degradation of flowing gas-phase VOCs[J]. The Journal of Physical Chemistry C, 2019, 123(19): 12321-12334.
|
WANG J, TANG L, ZENG G, et al. 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight[J]. Applied Catalysis B: Environmental, 2018, 222: 115-123.
|
LI Y, HUI B, GAO L, et al. Facile one-pot synthesis of wood based bismuth molybdate nano-eggshells with efficient visible-light photocatalytic activity[J]. Colloids and Surfaces A: physicochemical and Engineering Aspects, 2018, 556: 284-290.
|
HUANG H, OU H, FENG J, et al. Achieving highly promoted visible-light sensitive photocatalytic activity on BiOIO3 via facile iodine doping[J]. Colloids and Surfaces A: physicochemical and Engineering Aspects, 2017, 518: 158-165.
|
ZHU C, LIU Y, CAO H, et al. Insight into the influence of morphology of Bi2WO6 for photocatalytic degradation of VOCs under visible light[J]. Colloids and Surfaces A: physicochemical and Engineering Aspects, 2019, 568: 327-333.
|
ZHANG Y C, LI Z, ZHANG L, et al. Role of oxygen vacancies in photocatalytic water oxidation on ceria oxide: experiment and DFT studies[J]. Applied Catalysis B: Environmental, 2018, 224: 101-108.
|
ZHANG S, PU W, CHEN A, et al. Oxygen vacancies enhanced photocatalytic activity towards VOCs oxidation over Pt deposited Bi2WO6 under visible light[J]. Journal of hazardous materials, 2019: 121478.
|
SAISON T, GRAS P, CHEMIN N, et al. New insights into Bi2WO6 properties as a visible-light photocatalyst[J]. The Journal of Physical Chemistry C, 2013, 117(44): 22656-22666.
|
CHENG G, SHAHEER AKHTAR M, YANG O, et al. Nanoprecursor-mediated synthesis of Mg2+-doped TiO2 nanoparticles and their application for dye-sensitized solar cells[J]. Journal of nanoscience and nanotechnology, 2016, 16(1): 744-752.
|
FU S, ZHENG Y, ZHOU X, et al. Visible light promoted degradation of gaseous volatile organic compounds cat-alyzed by Au supported layered double hydroxides: influencing factors, kinetics and mechanism[J]. Journal of hazardous materials, 2019, 363: 41-54.
|
WANG J, XU X, CAO F, et al. In situ fabrication of α-Fe2O3/CaFe2O4 pn heterojunction with enhanced VOCs photodegradation activity[J]. Advanced Powder Technology, 2019, 30(3): 590-595.
|
陈颖芝, 王鲁宁. 有机光催化剂的研究进展[J]. 化学工业与工程, 2015, 32(3): 30-37.
|
ZHANG X, LI H, LV X, et al. Facile synthesis of highly efficient amorphous Mn-MIL-100 Catalysts: formation mechanism and structure changes during application in CO oxidation[J]. Chemistry-A European Journal, 2018, 24(35): 8822-8832.
|
LIU N, HUANG W, ZHANG X, et al. Ultrathin graphene oxide encapsulated in uniform MIL-88A (Fe) for enhanced visible light-driven photodegradation of RhB[J]. Applied Catalysis B: Environmental, 2018, 221: 119-128.
|
ZHANG X, LV X, SHI X, et al. Enhanced hydrophobic UiO-66(University of Oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air[J]. Journal of colloid and interface science, 2019, 539: 152-160.
|
KERSHAW S V, JING L, HUANG X, et al. Materials aspects of semiconductor nanocrystals for optoelectronic applications[J]. Materials Horizons, 2017, 4(2): 155-205.
|
Yang Y, Que W, Zhang X, et al. Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation[J]. Journal of hazardous materials, 2016, 317: 430-439.
|
邹明强, 杨蕊, 李锦丰, 等. 量子点的光学特征及其在生命科学中的应用[J]. 分析测试学报, 2005, 24(6): 133-137.
|
KE J, LI X, ZHAO Q, et al. Upconversion carbon quantum dots as visible light responsive component for efficient enhancement of photocatalytic performance[J]. Journal of colloid and interface science, 2017, 496: 425-433.
|
姜星雨. 碳量子点-ZIF-67催化剂的制备及其气相甲苯吸附-降解性能研究[D]. 大连: 大连理工大学, 2018.
|
张治广. 卟啉/苯二甲酸类配位聚合物的制备及光催化降解气相甲苯的性能研究[D]. 大连: 大连理工大学, 2016.
|
ZOU W, GAO B, OK Y S, et al. Integrated adsorption and photocatalytic degradation of volatile organic com-pounds (VOCs) using carbon-based nanocomposites: a critical review[J]. Chemosphere, 2019, 218: 845-859.
|
ZHU L, MENG L, SHI J, et al. Metal-organic frameworks/carbon-based materials for environmental remediation: a state-of-the-art mini-review[J]. Journal of environmental management, 2019, 232: 964-977.
|
MO J, ZHANG Y, XU Q, et al. Photocatalytic purification of volatile organic compounds in indoor air: a literature review[J]. Atmospheric environment, 2009, 43(14): 2229-2246.
|
QIAN X, YUE D, TIAN Z, et al. Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs[J]. Applied Catalysis B: Environmental, 2016, 193: 16-21.
|
LUO S, KE J, YUAN M, et al. CuInS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants[J]. Applied Catalysis B: Environmental, 2018, 221: 215-222.
|
SHAO D, CHENG Y, HE J, et al. A Spatially Separated Organic-inorganic Hybrid Photoelectrochemical Cell for Unassisted Overall Water Splitting[J]. ACS Catalysis, 2017, 7(8): 5308-5315.
|
SARKAR D, ISHCHUK S, TAFFA D H, et al. Oxygen-deficient titania with adjustable band positions and defects; molecular layer deposition of hybrid organic-inorganic thin films as precursors for enhanced photocatalysis[J]. The Journal of Physical Chemistry C, 2016, 120(7): 3853-3862.
|
CHENG H, TING C, YUE Z, et al. Photocatalytic activity and optoelectronic property of porphyrin tin-sensitized TiO2 nanotubes[J]. Chinese Journal Of Inorganic Chemstry, 2014, 30(2): 331-336.
|
TRUC N T T, PHAM T D, VAN THUAN D, et al. Superior activity of Cu-NiWO4/g-C3N4 Z direct system for photo-catalytic decomposition of VOCs in aerosol under visible light[J]. Journal of Alloys and Compounds, 2019, 798: 12-18.
|
LI X, LV X, ZHANG Q, et al. Self-assembled supramolecular system PDINH on TiO2 surface enhances hydrogen production[J]. Journal of colloid and interface science, 2018, 525: 136-142.
|
王帆, 吴秀明, 张旭红, 等. 有机/无机复合光催化剂的合成与表征[C]//中国化学会第30届学术年会摘要集-第27分会: 光化学, 2016.
|
GE L, HAN C, LIU J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange[J]. Applied Catalysis B: Environmental, 2011, 108: 100-107.
|
PENG X S, KADAVANICH M C, ALIVISATOS A P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J]. J Am Chem Soc, 1997, 119: 7019-7029.
|
孙聆东, 付雪峰, 钱程, 等. 水热法合成CdS/ZnO核壳结构纳米微粒[J]. 高等学校化学学报, 2001, 22(6): 879-882.
|
WEI W, ZHU Y. TiO2@perylene diimide full-spectrum photocatalysts via semi-core-shell structure[J]. SMALL, 2019: 1903933.
|
PAN C, XU J, WANG Y, et al. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly[J]. Advanced Functional Materials, 2012, 22(7): 1518-1524.
|
LUO S, KE J, YUAN M, et al. CuInS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants[J]. Applied Catalysis B: Environmental, 2018, 221: 215-222.
|
QIAN X, YUE D, TIAN Z, et al. Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs[J]. Applied Catalysis B: Environmental, 2016, 193: 16-21.
|
王琪, 曾曦, 刘心中. Bi2WO6复合g-C3N4的制备及其光催化降解甲苯的研究[J]. 化学与粘合, 2019, 41(5):350-354
,372.
|
NIE L, DUAN B, LU A, et al. Pd/TiO2@carbon microspheres derived from chitin for highly efficient photocat-alytic degradation of volatile organic compounds[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 1658-1666.
|