XU Zun-zhu, LU Zhao-yang, ZHANG Ji-wen, SUN Yong-jia, GAO Shuang, YI Bin, WANG Teng-jiao, WANG Fei. APPLICATION STATUS OF INDUSTRIAL VOCs TREATMENT TECHNOLOGIES IN TYPICAL CITIES OF THE YANGTEZ RIVER DELTA REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 54-59. doi: 10.13205/j.hjgc.202001008
Citation:
XU Zun-zhu, LU Zhao-yang, ZHANG Ji-wen, SUN Yong-jia, GAO Shuang, YI Bin, WANG Teng-jiao, WANG Fei. APPLICATION STATUS OF INDUSTRIAL VOCs TREATMENT TECHNOLOGIES IN TYPICAL CITIES OF THE YANGTEZ RIVER DELTA REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 54-59. doi: 10.13205/j.hjgc.202001008
XU Zun-zhu, LU Zhao-yang, ZHANG Ji-wen, SUN Yong-jia, GAO Shuang, YI Bin, WANG Teng-jiao, WANG Fei. APPLICATION STATUS OF INDUSTRIAL VOCs TREATMENT TECHNOLOGIES IN TYPICAL CITIES OF THE YANGTEZ RIVER DELTA REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 54-59. doi: 10.13205/j.hjgc.202001008
Citation:
XU Zun-zhu, LU Zhao-yang, ZHANG Ji-wen, SUN Yong-jia, GAO Shuang, YI Bin, WANG Teng-jiao, WANG Fei. APPLICATION STATUS OF INDUSTRIAL VOCs TREATMENT TECHNOLOGIES IN TYPICAL CITIES OF THE YANGTEZ RIVER DELTA REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 54-59. doi: 10.13205/j.hjgc.202001008
Center of Regional Watershed Environment Comprehensive Control Technology in Jiangsu Province, Academy of Environmental Planning&Design Co., Ltd, Nanjing University, Nanjing 210093, China
The application of different technologies was analyzed based on 398 sets of exhaust gas treatment systems in 213 key industry enterprises in typical cities of the Yangtze River Delta, including adsorption, absorption, condensation, photolysis/photocatalysis, low temperature plasma, combustion and biological treatment methods. This study analyzed the application of different combinations of the above treatment technologies and the actual purification effect of VOCs in different key industries. Results showed that the adsorption technology with broad spectrum was the most commonly used with the application propotion of 47.49%, and the purification efficiency could be as high as 90% above, when adsorption regeneration combined with end-treatment technologies such as combustion and condensation, and the amount of waste adsorbent was reduced by 90% at least, achieving the resource and energy reuse of VOCs containing waste gas. The treatment process had certain selectivity and preference, such as absorption, condensation, photolysis/photocatalysis, low temperature plasma and biological technology. The reasonable selection of technologies combination could take advantage of different processing technologies to ensure the efficiency and stability.
CHEN K, FIORE A M, CHEN R J, et al. Future ozone-related acute excess mortality under climate and population change scenarios in China: a modeling study[J]. Plos Medicine, 2018, 15(7): e1002598.