Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 38 Issue 1
Mar.  2020
Turn off MathJax
Article Contents
LI Pei-pei, ZHOU Yu-zhou, XIANG Yu-jia, ZHOU Yao-yu, ZHU Hong-mei, RONG Xiang-min. ADSORPTION PERFORMANCE OF P-ARSANILIC ACID IN AQUEOUS SOLUTION BY BIOCHAR SUPPORTED MANGANESE FERRATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 75-79,86. doi: 10.13205/j.hjgc.202001011
Citation: LI Pei-pei, ZHOU Yu-zhou, XIANG Yu-jia, ZHOU Yao-yu, ZHU Hong-mei, RONG Xiang-min. ADSORPTION PERFORMANCE OF P-ARSANILIC ACID IN AQUEOUS SOLUTION BY BIOCHAR SUPPORTED MANGANESE FERRATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 75-79,86. doi: 10.13205/j.hjgc.202001011

ADSORPTION PERFORMANCE OF P-ARSANILIC ACID IN AQUEOUS SOLUTION BY BIOCHAR SUPPORTED MANGANESE FERRATE

doi: 10.13205/j.hjgc.202001011
  • Received Date: 2019-01-24
  • The p-arsanilic acid adsorbent MFB-MCs was prepared by co-precipitation method with vinasse, manganese sulfate monohydrate (MnSO4·H2O) and ferric chloride hexahydrate (FeCl3·6H2O) as the raw materials. The SEM and TEM analysis and characterization of MFB-MCs were carried out. The effects of initial solution pH, adsorption dose, temperature and time on the adsorption of p-arsanilic acid were investigated. The results showed that MFB-MCs could effectively remove the p-arsanilic acid in aqueous solution; the influences of initial pH on adsorption process of MFB-MCs to p-arsanilic acid in water was greater. With the condition of temperature of 25 ℃, initial solution pH of 2.0, the adsorption dose of 1 g/L, after 1440 minutes adsorption, the removal rate of p-arsanilic acid with initial concentration of 20 mg/L reached 82.27%; the adsorption process of MFB-MCs on p-arsanilic acid conformed to the pseudo-second-order kinetic model, so it was mainly controlled by chemical adsorption. At the same time, the adsorption process conformed to the Freundlich isotherm model, which belonged to multi-layer adsorption process.
  • loading
  • 刘玉坤,郑星,陈勐,等. 铝易拉罐/Fe(Ⅱ)/O2体系降解对氨基苯胂酸的机理[J]. 环境工程学报,2017,11(3):1417-1422.
    何万领,李晓丽,常会庆,等. 不同水平阿散酸粪肥对水稻生长发育及砷积累的影响[J]. 植物营养与肥料学报,2018,24(4):1088-1096.
    何万领,李晓丽,杨肖娥,等. 阿散酸在土壤中的降解与形态变化[J]. 环境工程学报,2018,12(1):198-205.
    WANG H L, HU Z H, TONG Z L, et al. Effect of arsanilic acid on anaerobic methanogenic process: kinetics, inhibition and biotransformation analysis[J]. Biochemical Engineering Journal,2014,91:179-185.
    FISHER D J, YONKOS L T, STAVER K W. Environmental concerns of roxarsone in broiler poultry feed and litter in Maryland, USA[J]. Environmental Science and Technology,2015,49(4):1999-2012.
    耿安静,王旭,陈岩,等. 有机胂阿散酸的研究现状及潜在风险[J]. 农产品质量与安全,2017(5):87-91.
    CHATTERJEE S, DE S. Adsorptive removal of arsenic from groundwater using chemically treated iron ore slime incorporated mixed matrix hollow fiber membrane[J]. Separation and Purification Technology,2017,179:357-368.
    HU Q S, LIU Y L, GU X Y, et al. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles[J]. Chemosphere,2017,181:328-336.
    JOSHI T P, ZHANG G, JEFFERSON W A, et al. Adsorption of aromatic organo-arsenic compounds by ferric and manganese binary oxide and description of the associated mechanism[J]. Chemical Engineering Journal,2017,309:577-587.
    王亚娇. 有机砷对厌氧消化的影响及其吸附去除研究[D].合肥:合肥工业大学,2016.
    苏立强,尤嘉,王丽博,等. 阿散酸磁性分子印迹聚合物的制备及其应用[J]. 理化检验(化学分册),2018,54(4):373-378.
    李铮,雷鸣. 铁氧体及其复合材料对水体中氨基苯胂酸去除效能的研究[J]. 中国资源综合利用,2018,36(11):11-13.
    JUNG K W, LEE S, LEE Y J. Synthesis of novel magnesium ferrite (MgFe2O4)/biochar magnetic composites and its adsorption behavior for phosphate in aqueous solutions[J]. Bioresource Technology,2017,245:751-759.
    WANG W, DING Z, CAI M, et al. Synthesis and high efficiency methylene blue adsorption of magnetic PAA/MnFe2O4 nanocomposites[J]. Applied Surface Science,2015,346:348-353.
    ZHENG S, JIANG W J, CAI Y, et al. Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2 suspension[J]. Catalysis Today,2014,224:83-88.
    LV Y C, ZHANG R S, ZENG S L, et al. Removal of p-arsanilic acid by an amino-functionalized indium-based metal-organic framework: adsorption behavior and synergetic mechanism[J]. Chemical Engineering,2018,339:359-368.
    梅向阳,王耀,朱丽云,等. 氨基化锰铁氧体纳米粒子的制备及吸附Pb2+和Cd2+性能研究[J].化学通报,2019,82(2):144-150.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (192) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return