Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHANG Zhong-di, SHAO Tian-jie, HUANG Xiao-gang, WEI Pei-ru. CHARACTERISTICS AND POTENTIAL SOURCES OF PM2.5 POLLUTION IN BEIJING-TIANJIN-HEBEI REGION IN 2017[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 99-106,134. doi: 10.13205/j.hjgc.202002014
Citation: CHEN Ying-qing, WEN Yue, WANG Xue-ye, LI Zhen, PENG Zheng-liang, LV Rui-bin, SHEN Yi-wen, WANG Zhi-wei. MODIFIED EPOXY COATING BY ADDING QUATERNARY AMMONIUM COMPOUND AND ITS PROPERTIES IN INHIBITING ALGAL ADHESION AND GROWTH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 80-86. doi: 10.13205/j.hjgc.202001012

MODIFIED EPOXY COATING BY ADDING QUATERNARY AMMONIUM COMPOUND AND ITS PROPERTIES IN INHIBITING ALGAL ADHESION AND GROWTH

doi: 10.13205/j.hjgc.202001012
  • Received Date: 2019-06-21
  • In municipal wastewater treatment plants, wastewater treatment facilities are usually covered by a great amount of algae. To solve this problem, in this study, quaternary ammonium compound (QAC)/epoxy composite coatings were prepared by blending QAC into epoxy paint. Effects of QAC dosage on the physicochemical properties and anti-algal adhesion/growth behaviors of the composite coatings were investigated. The results showed that QAC was successfully present on the modified coating and more quaternary ammonium groups (R4N+) were loaded on the surface with the increase of QAC dosage. No significant differences in hydrophobicity and water stabilities were observed between epoxy coating and the modified ones. Compared to the original coating, zeta potential of composite coatings was shifted towards less negative potential and roughness was slightly lower as the result of QAC dosing. The inhibition properties of algae of the coatings were evaluated using Chlorella vulgaris as the model algae. Less Chlorella vulgaris were adhered on QAC/epoxy composite coatings than epoxy coating and better anti-algae performance was obtained with higher QAC concentration.
  • SAUVET G, FORTUNIAK W, KAZMIERSKI K, et al. Amphiphilic block and statistical siloxane copolymers with antimicrobial activity[J]. Journal of Polymer Science Part A Polymer Chemistry, 2003, 41(19): 2939-2948.
    GOTTENBOS B, BUSSCHER H J, VAN DER MEI H C. Pathogenesis and prevention of biomaterial centered infections[J]. Journal of Materials Science: Materials in Medicine, 2002, 13(8): 717-722.
    GOTTENBOS B, VAN DER MEI H C, KLATTER F, et al. In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber[J]. Biomaterials, 2002, 23(6): 1417-1423.
    LENOIR S, PAGNOULLE C, DETREMBLEUR C, et al. Antimicrobial activity of polystyrene particles coated by photo-crosslinked block copolymers containing a biocidal polymethacrylate block[J]. E-Polymers, 2005, 74: 1-11.
    MAJUMDAR P, LEE E, PATEL N, et al. Combinatorial materials research applied to the development of new surface coatings Ⅸ: an investigation of novel antifouling/fouling-release coatings containing quaternary ammonium salt groups[J]. Biofouling, 2008, 24(3): 185-200.
    NURDIN N, HELARY G, SAUVET G. Biocidal polymers active by contact. Ⅱ. Biological evaluation of polyurethane coatings with pendant quaternary ammonium salts[J]. Journal of Applied Polymer Science, 1993, 50(4): 663-670.
    TASHIRO T. Antibacterial and bacterium adsorbing macromolecules[J]. Macromolecular Materials & Engineering, 2001, 286(2): 63-87.
    MURATA H, KOEPSEL R R, MATYJASZEWSKI K, et al. Permanent, non-leaching antibacterial surfaces-2: how high density cationic surfaces kill bacterial cells[J]. Biomaterials, 2007, 28(32): 4870-4879.
    张文涛, 张庆华, 詹晓力, 等. 季铵盐修饰有机硅改性聚氨酯的制备与杀菌性能[J]. 化工新型材料, 2012, 40(9): 116-119.
    JELLALI R, KROMKAMP J C, CAMPISTRON I, et al. Antifouling action of polyisoprene-based coatings by inhibition of photosynthesis in microalgae[J]. Environmental Science & Technology, 2013, 47(12): 6573-6581.
    CONESKI P N, WEISE N K, FULMER P A, et al. Development and evaluation of self-polishing urethane coatings with tethered quaternary ammonium biocides[J]. Progress in Organic Coatings, 2013, 76(10): 1376-1386.
    VILLACORTE L O, EKOWATI Y, NEU T R, et al. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae[J]. Water Research, 2015, 73: 216-230.
    HE X Y, SUO X K, BAI X Q, et al. Functionalizing aluminum substrata by quaternary ammonium for antifouling performances[J]. Applied Surface Science, 2018, 440: 300-307.
    MENG J Q, ZHANG X, NI L, et al. Antibacterial cellulose membrane via one-step covalent immobilization of ammonium/amine groups[J]. Desalination, 2015, 359: 156-166.
    ZHANG Q H, LIU H L, ZHAN X L, et al. Microstructure and antibacterial performance of functionalized polyurethane based on polysiloxane tethered cationic biocides[J]. RSC Advances, 2015, 5(95): 77508-77517.
    YUAN S J, GU J T, ZHENG Y, et al. Purification of phenol-contaminated water by adsorption with quaternized poly(dimethylaminopropyl methacrylamide)-grafted PVBC microspheres[J]. Journal of Materials Chemistry A, 2015, 3(8): 4620-4636.
    LIU C X, ZHANG D R, HE Y, et al. Modification of membrane surface for anti-biofouling performance: effect of anti-adhesion and anti-bacteria approaches[J]. Journal of Membrane Science, 2010, 346(1): 121-130.
    ZHANG X R, WANG Z W, CHEN M, et al. Polyvinylidene fluoride membrane blended with quaternary ammonium compound for enhancing anti-biofouling properties: effects of dosage[J]. Journal of Membrane Science, 2016, 520: 66-75.
    JELLALI R, KROMKAMP J C, CAMPISTRON I, et al. Antifouling action of polyisoprene-based coatings by inhibition of photosynthesis in microalgae[J]. Environmental Science & Technology, 2013, 47(12): 6573-6581.
    MAJUMDAR P, LEE E, PATEL N, et al. Development of environmentally friendly, antifouling coatings based on tethered quaternary ammonium salts in a crosslinked polydimethylsiloxane matrix[J]. Journal of Coatings Technology and Research, 2008, 5(4): 405-417.
  • Relative Articles

    [1]LIU Haotian, TONG Jilong, YANG Hong, LIU Yongle, AO Congjie, WANG Shusu. COMPARATIVE STUDY ON VOCs POLLUTION CHARACTERISTICS AND SOURCE ANALYSIS BETWEEN LANZHOU DOWNTOWN AREA AND XIGU REFINING CHEMICAL INDUSTRY ZONE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 139-147. doi: 10.13205/j.hjgc.202404017
    [2]YANG Zhixuan, LI Lanqing, LIU Huanjia, YANG Ying, XU Mengyuan, JIA Mengke, LIU Hengzhi. SEASONAL VARIATION, SOURCE AND LIGHT EXTINCTION CONTRIBUTION OF WATER-SOLUBLE INORGANIC IONS OF PM2.5 IN THE NORTHERN SUBURB OF ANYANG, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 71-81. doi: 10.13205/j.hjgc.202406009
    [3]WU Yihao, CUI Yaojia, ZANG Xinzhi, WANG Wenqiang, YE Zhaolian. OXIDATIVE POTENTIAL AND SOURCE APPORTIONMENT OF PM2.5 DURING SPRING IN CHANGZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 53-61. doi: 10.13205/j.hjgc.202405007
    [4]GUO Qianjin. COMPONENTS CHARACTERISTICS AND SOURCE APPORTIONMENT OF PM2.5 IN AUTUMN AND WINTER IN JINCHENG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 153-161. doi: 10.13205/j.hjgc.202407017
    [5]XU Yuanqian, FU Guangyu, SHENG Haozhe, YUE Libo, SUN Peng, LUO Yilin, CAO Jiahui, CAO Xia, CHEN Yang. PM2.5 POLLUTION CHARACTERISTICS AND SOURCE APPORTIONMENT IN A TYPICAL INDUSTRIAL CITY OF HENAN PROVINCE DURING AUTUMN AND WINTER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 136-144. doi: 10.13205/j.hjgc.202412017
    [6]WEI Xiangnan, MA Yunfeng, BAO Huiyu, ZHAO Huijie, SUN Xuebin, WANG Shuai, HOU Le. CHARACTERISTICS ANALYSIS OF PM2.5 AND O3 POLLUTION IN SHENYANG CITY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 73-82. doi: 10.13205/j.hjgc.202410010
    [7]ZHANG Yibing, LIANG Yiqun, ZHANG Yuan, FANG Yinxiang, NIU Hongya, FAN Jingsen. SOURCE APPORTIONMENT AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN PM2.5 IN THE FENGFENG MINING AREA IN 2017—2019[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 242-250. doi: 10.13205/j.hjgc.202308031
    [8]LI Hongliang, TAO Jie, LI Lanqing, ZHAO Wenpeng, XU Mengyuan, JIA Mengke, YANG Ying, LIU Huanjia. POLLUTION CHARACTERISTICS AND SOURCE APPORTIONMENT OF WATER-SOLUBLE IONS IN PM2.5 IN XINXIANG[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 117-126. doi: 10.13205/j.hjgc.202308015
    [9]LI Yang, LIU Yong-he, WANG Xi-yue, WANG Hai-lin. SPATIAL-TEMPORAL CHARACTERISTICS OF PM2.5 AND PM10 AND THEIR RELATIONSHIPS WITH METEOROLOGICAL FACTORS IN JIAOZUO, HENAN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 44-53. doi: 10.13205/j.hjgc.202209006
    [10]ZHAO Hui-jie, MA Yun-feng, WANG Shuai, LIU Qi-yao, WEI Xiang-nan. CAUSE ANALYSIS OF A HEAVY PM2.5 POLLUTION PROCESS OCCURED IN SHENYANG[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 33-43. doi: 10.13205/j.hjgc.202209005
    [11]SHEN Song, LIU Lei, WEN Wei, XING Yi, SU Wei, SUN Jiaqi. POLLUTION CHARACTERIZATION AND SOURCE ANALYSIS OF CARBON COMPONENTS OF PM2.5 IN BEIJING AND SURROUNDING AREAS IN SUMMER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 71-80. doi: 10.13205/j.hjgc.202202012
    [12]ZHANG Kuo, ZHANG Yong-bin, LI Cheng-ming, DAI Zhao-xin. SEASONAL DIFFERENCE ANALYSIS OF THE RELATIONSHIP BETWEEN PM2.5 AND LAND USE: A CASE STUDY OF WEIFANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 72-78. doi: 10.13205/j.hjgc.202104012
    [13]GAO Chan-juan, ZHAO Qi-chao, DING Ruo-nan, ZHANG Jin-ming, LI Ying-hua, DONG Chun-xin. VARIATIONS OF ATMOSPHERIC POLLUTANTS CONCENTRATIONS AND THEIR CORRELATION WITH METEOROLOGICAL FACTOR IN JILIN CITY IN 2018[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 71-79. doi: 10.13205/j.hjgc.202105010
    [14]WANG Cheng, CAO Jing-yuan, DUAN Xiao-lin, CHEN Hao, YAN Yu-long, PENG Lin. CHARACTERISTICS AND SOURCES ANALYSIS OF CARBONACEOUS COMPONENTS IN PM2.5 IN WINTER IN FOUR CITIES OF SHANXI PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 114-121. doi: 10.13205/j.hjgc.202106017
    [15]SU Ming-wei, ZHANG Wei-feng, ZHENG Run-he. DISTRIBUTION CHARACTERISTICS AND DIFFERENCE ANALYSIS OF PM2.5 BASED ON WAVELET ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 96-103. doi: 10.13205/j.hjgc.202105013
    [16]YANG Zhi-hua, ZHANG Rui, LIU Qiong-yu, TAO Yuan, JIANG Jun-ting, TAN Jing, CHENG Jin-jun, YE Xun. ESTABLISHMENT AND CHARACTERISTIC ANALYSIS ON FINE PARTICULATE MATTER SOURCE PROFILE OF OPEN-SOURCES IN WUHAN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 80-88. doi: 10.13205/j.hjgc.202105011
    [17]WU Qi-hao, JIANG Xin-quan, MA Xiao-li, CHEN Ping, CHEN Jing-run. CORRELATION ANALYSIS OF HEAVY METAL POLLUTION AND MAGNETIC SUSCEPTIBILITY IN SOIL OF A SEWAGE IRRIGATION AREA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 231-235,174. doi: 10.13205/j.hjgc.202009037
    [18]ZENG Yi-chuan, WANG Hua, QU Hao, HE Xin-chen, YAN Huai-yu, SHEN Yu-han. SPATIO-TEMPERAL DISTRIBUTION CHARACTERISTICS AND CORRELATION ANALYSIS OF CHLOROPHYLL-A IN RIVER NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 23-30,153. doi: 10.13205/j.hjgc.202009004
    [19]DING Shu-qin, WU Jia-ping, WAN Xue-ping, JIANG Lin, ZHAO Xue-ting, SHA Dan-dan. ANALYZE ON PM2.5 AND ITS MAIN CHEMICAL COMPOSITION DURING TYPICAL HEAVY AIR POLLUTION IN AUTUMN AND WINTER IN CHANGSHU[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 142-147,161. doi: 10.13205/j.hjgc.202003024
    [20]WEI Wen-jing, XIE Bing-geng, ZHOU Kai-chun, LI Xiao-qing. RESEARCH ON TEMPORAL AND SPATIAL VARIATIONS OF ATMOSPHERIC PM2.5 AND PM10 AND THE INFLUENCING FACTORS IN SHANDONG, CHINA DURING 2013—2018[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 103-111. doi: 10.13205/j.hjgc.202012018
  • Cited by

    Periodical cited type(19)

    1. 桂佳群,杨员,王显钦,李云武,闫广轩,徐鹏. 贵阳市花溪城区大气PM_(2.5)中碳质气溶胶的变化特征及来源解析. 环境科学. 2024(03): 1337-1348 .
    2. 李江苏,段良荣,张天娇. 中国城市PM_(2.5)和PM_(10)时空分布特征和影响因素分析. 环境科学. 2024(04): 1938-1949 .
    3. 王妍然,张晓琳,王文良,吴杨潇影,林晶晶,王桂霞. 2021年山东省冬季一次重污染天气特征分析. 清洗世界. 2024(07): 151-153 .
    4. 柳林,汪恒生,李万武,王晓霞,朱燕煌. 复杂网络视角下京津冀晋鲁豫地区PM_(2.5)的相互作用特征及归因分析. 地域研究与开发. 2024(04): 168-173+180 .
    5. 杨洁,郑嘉兴,徐婷婷,吴雨涟,阚诗烨,沈春其,邵智娟. 苏州市PM_(2.5)和O_3污染特征、输送路径及潜在源区分析. 环境科学. 2024(11): 6238-6247 .
    6. 王桂霞,许杨,林晶晶,丁椿,张淼. 山东省冬季一次典型重污染天气过程分析. 四川环境. 2023(01): 101-108 .
    7. 李慧,王涵,严沁,程苗苗,李燕丽,张文杰. 汾渭平原秋冬季PM_(2.5)化学组分特征及其来源. 环境科学研究. 2023(03): 449-459 .
    8. 何静,赵志刚,蔺尾燕,祝婕,常梦迪,藏晓芳,赵强. 2021年乌鲁木齐市大气污染时空分布特征. 新疆环境保护. 2023(02): 9-15 .
    9. 马康,林跃胜,方凤满. 2014—2020年供暖期间我国北方核心城市大气污染物污染特征及潜在源区解析. 安徽师范大学学报(自然科学版). 2022(03): 237-243+298 .
    10. 李淑婷,李霞,毛列尼·阿依提看,钟玉婷,王慧琴. 2017—2019年中天山北坡城市群大气污染及污染天气类型特征. 干旱区地理. 2022(04): 1082-1092 .
    11. 冯万富,沈新志,周继良,李月凤,单燕祥,余洁. 基于气象要素的鸡公山景区PM_(10)浓度预测. 河南大学学报(自然科学版). 2022(05): 571-578 .
    12. 刘贤赵,张国桥,杨文涛,吴业荣,李朝奎,任毅. 长株潭城市群PM_(2.5)和O_3浓度时空分布特征及影响因素分析. 环境科学. 2022(12): 5354-5366 .
    13. 李慧,王淑兰,张文杰,王涵,王涵,王少博,李海生. 京津冀及周边地区“2+26”城市空气质量特征及其影响因素. 环境科学研究. 2021(01): 172-184 .
    14. 周志凌,程先富. 基于MGWR模型的中国城市PM_(2.5)影响因素空间异质性. 中国环境科学. 2021(06): 2552-2561 .
    15. 张章,孙峰,李倩,姚欢,董欣,刘保献,安欣欣,李云婷. 2013—2018年北京市PM_(2.5)污染波动特征研究. 环境监控与预警. 2021(04): 33-39 .
    16. 李丹,伦小秀,邸林栓,王璇. 秦皇岛市大气PM_(2.5)中一元羧酸的污染特征及来源分析. 环境科学研究. 2021(11): 2579-2587 .
    17. 高琦,郭新成,孟妮娜,王利,丁慧兰. 京津冀气溶胶时空变化特征及潜在来源分析. 科学技术与工程. 2021(30): 13185-13195 .
    18. 折远洋,李忠勤,王芳龙,周茜,张芳芳,杨磊. 秦巴山地西部地区2015—2018年大气污染物变化特征及潜在来源分析. 环境科学学报. 2020(06): 1987-1997 .
    19. 魏文静,谢炳庚,周楷淳,李晓青. 2013—2018年山东省大气PM_(2.5)和PM_(10)污染时空变化及其影响因素. 环境工程. 2020(12): 103-111 . 本站查看

    Other cited types(13)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.4 %FULLTEXT: 10.4 %META: 82.7 %META: 82.7 %PDF: 6.9 %PDF: 6.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.3 %其他: 15.3 %China: 1.5 %China: 1.5 %上海: 2.5 %上海: 2.5 %临汾: 1.0 %临汾: 1.0 %北京: 13.9 %北京: 13.9 %南京: 2.0 %南京: 2.0 %南通: 0.5 %南通: 0.5 %台州: 1.5 %台州: 1.5 %唐山: 0.5 %唐山: 0.5 %大同: 0.5 %大同: 0.5 %天津: 2.5 %天津: 2.5 %太原: 1.0 %太原: 1.0 %安康: 0.5 %安康: 0.5 %常德: 0.5 %常德: 0.5 %廊坊: 1.0 %廊坊: 1.0 %开封: 1.5 %开封: 1.5 %张家口: 1.0 %张家口: 1.0 %徐州: 0.5 %徐州: 0.5 %成都: 0.5 %成都: 0.5 %成都市武侯区: 1.5 %成都市武侯区: 1.5 %拉贾斯坦邦: 0.5 %拉贾斯坦邦: 0.5 %无锡: 1.0 %无锡: 1.0 %昆明: 1.5 %昆明: 1.5 %晋城: 1.0 %晋城: 1.0 %朝阳: 0.5 %朝阳: 0.5 %杭州: 0.5 %杭州: 0.5 %榆林: 1.0 %榆林: 1.0 %武汉: 1.0 %武汉: 1.0 %济南: 0.5 %济南: 0.5 %济源: 1.0 %济源: 1.0 %漯河: 1.5 %漯河: 1.5 %石家庄: 1.5 %石家庄: 1.5 %秦皇岛: 1.0 %秦皇岛: 1.0 %芒廷维尤: 17.3 %芒廷维尤: 17.3 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.5 %苏州: 0.5 %衢州: 2.0 %衢州: 2.0 %西宁: 6.4 %西宁: 6.4 %西安: 0.5 %西安: 0.5 %贵阳: 0.5 %贵阳: 0.5 %运城: 3.0 %运城: 3.0 %遵义: 0.5 %遵义: 0.5 %邯郸: 0.5 %邯郸: 0.5 %郑州: 3.5 %郑州: 3.5 %重庆: 0.5 %重庆: 0.5 %长治: 2.5 %长治: 2.5 %其他China上海临汾北京南京南通台州唐山大同天津太原安康常德廊坊开封张家口徐州成都成都市武侯区拉贾斯坦邦无锡昆明晋城朝阳杭州榆林武汉济南济源漯河石家庄秦皇岛芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (543) PDF downloads(23) Cited by(32)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return