Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YUAN Jian, QIAN Ya-jie, XUE Gang, ZHANG Quan, LI Qian, LIU Zi-hao, LI Xian-ying. REMOVAL OF CADMIUM AND LEAD IN WATER BY MAGNETIC CARBON PREPARED FROM ACTIVATED SLUDGE WITH HYDROTHERMAL CARBONIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 55-62. doi: 10.13205/j.hjgc.202002007
Citation: YUAN Jian, QIAN Ya-jie, XUE Gang, ZHANG Quan, LI Qian, LIU Zi-hao, LI Xian-ying. REMOVAL OF CADMIUM AND LEAD IN WATER BY MAGNETIC CARBON PREPARED FROM ACTIVATED SLUDGE WITH HYDROTHERMAL CARBONIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 55-62. doi: 10.13205/j.hjgc.202002007

REMOVAL OF CADMIUM AND LEAD IN WATER BY MAGNETIC CARBON PREPARED FROM ACTIVATED SLUDGE WITH HYDROTHERMAL CARBONIZATION

doi: 10.13205/j.hjgc.202002007
  • Received Date: 2018-12-12
  • Magnetic biochar (Fe-SSBC) was prepared from activated sludge containing ferrous sulfate by hydrothermal carbonization at 220℃ for 4 h, achieving sludge reduction at the same time. Using Cd2+ and Pb2+ as the model pollutants, the effect of the Fe-SSBC dosage and the initial pH on the adsorption of Cd2+ and Pb2+ were studied, then the adsorption mechanism was investigated by adsorption kinetics and adsorption isotherm experiments. The samples were characterized by elemental analysis (EA), X ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), specific surface area (BET), X ray photoelectron spectroscopy (XPS) and hysteresis loop. The results showed that optimal condition for the best Cd2+ adsorption by Fe-SSBC was dosage of 0.2 g under pH=5, after 10 h, and the removal rate was close to 100%; while that for Pb2+ adsorption was dosage of 0.3 g under pH=6, after 8.5 h, and the removal rate was close to 100%. The adsorption kinetics of Cd2+ and Pb2+ by Fe-SSBC fitted the second-order kinetic model. The adsorption isotherm model of Langmuir could better fit the monolayer adsorption of Cd2+ and Pb2+ on Fe-SSBC. Chemisorption controlled the rate of adsorption process, and there was physical adsorption at the same time. In this study, sludge reduction was achieved by hydrothermal carbonization, meanwhile, a adsorbent was prepared to remove Cd2+ and Pb2+ effectively from water.
  • YUAN Y, YUAN T, WANG D M, et al. Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell[J]. Bioresource Technology, 2013, 144:115-120.
    HWANG I H, OUCHI Y, MATSUTO T. Characteristics of leachate from pyrolysis residue of sewage sludge[J]. Chemosphere, 2007, 68(10):1913-1919.
    LU H L, ZHANG W H, YANG Y X, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012, 46(3):854-862.
    ZHAI Y B, LIU X M, ZHU Y, et al. Hydrothermal carbonization of sewage sludge:the effect of feed-water pH on fate and risk of heavy metals in hydrochars[J]. Bioresource Technology, 2016, 218:183-188.
    LENG L J, YUAN X Z, HUANG H J, et al. Bio-char derived from sewage sludge by liquefaction:characterization and application for dye adsorption[J]. Applied Surface Science, 2015, 346:223-231.
    KIM D, LEE K, PARK K Y. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery[J]. Fuel, 2014, 130:120-125.
    SHAO Y C, LONG Y Y, WANG H Y, et al. Hydrochar derived from green waste by microwave hydrothermal carbonization[J]. Renewable Energy, 2019, 135:1327-1334.
    KHAN SARDAR, CHAO C, WAQAS M, et al. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil[J]. Environmental Science & Technology, 2013, 47(15):8624-8632.
    HUANG R X, TANG Y Z. Speciation dynamics of phosphorus during (Hydro) thermal treatments of sewage sludge[J]. Environmental Science & Technology, 2015, 49(24):14466-14474.
    ERDOGAN E, ATILA B, MUMME J, et al. Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor[J]. Bioresource Technology, 2015, 196(7):35-42.
    LIBRA J A, RO K S, KAMMANN C, et al. Hydrothermal carbonization of biomass residuals:a comparative review of the chemistry, processes and applications of wet and dry pyrolysis[J]. Biofuels, 2011, 2(1):71-106.
    IFTHIKAR J, WANG J, WANG Q, et al. Highly efficient lead distribution by magnetic sewage sludge biochar:sorption mechanisms and bench applications[J]. Bioresource Technology, 2017, 238:399-406.
    LU H L, ZHANG W H, YANG Y X, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012, 46(3):854-862.
    PEGGY A O, DIMITRI V, ROOT R, et al. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38):13703-13708.
    ZHANG F, WANG X, JI X H, et al. Efficient arsenate removal by magnetite-modified water hyacinth biochar[J]. Environmental Pollution, 2016, 216:575-583.
    HUANG D L, XUE W J, ZENG G M, et al. Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron:impact on enzyme activities and microbial community diversity[J]. Water Research, 2016, 106:15-25.
    CHEN T, ZHOU Z Y, HAN R, et al. Adsorption of cadmium by biochar derived from municipal sewage sludge:impact factors and adsorption mechanism[J]. Chemosphere, 2015, 134:286-293.
    KIM E J, LEE C S, CHANG Y Y, et al. Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems[J]. American Chemical Society, 2013, 5(19):9628-9634.
    ZHANG W, LO I M, TSANG D C. EDTA-enhanced washing for remediation of Pb-and/or Zn-contaminated soils[J]. Journal Environmental Engineering, 2006, 132:1282-1288.
    WANG P F, CAO M H, WANG C, et al. Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite[J]. Applied Surface Science, 2014, 290:116-124.
    TANG L, YANG G D, ZENG G M, et al. Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study[J]. Chemical Engineering Journal, 2014, 239:114-122.
  • Relative Articles

    [1]LIU Yanbo, ZHANG Zhaohan, LIU Guohong, SONG Yanfang, LI Jiannan, DUAN Jinhao, FENG Yujie. CONSTRUCTION OF A COMPREHENSIVE IMPACT ASSESSMENT METHOD OF SEWAGE TREATMENT TECHNOLOGY BASED ON LCA-AHP MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 52-59. doi: 10.13205/j.hjgc.202412007
    [2]ZHANG Yili, LIU Hui, QIAN Xiaoyong. N2O EMISSION FROM MUNICIPAL WASTEWATER TREATMENT PLANTS: EMISSION CHARACTERISTICS AND CONTROL STRATEGIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 9-21. doi: 10.13205/j.hjgc.202404002
    [3]HE Zihao, YI Mengting, ZHONG Qiumeng, LIANG Sai. INFLUENCING FACTORS OF SYNERGY DEGREE FOR INDUSTRIAL POLLUTANT AND CARBON REDUCTIONS IN CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 206-214. doi: 10.13205/j.hjgc.202401027
    [4]REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023
    [5]DING Yi, YIN Jian, JIANG Hongtao, XIA Ruici, WEI Danqi, LUO Xinyuan. SYSTEM DYNAMICS PREDICTION OF CARBON PEAKING IN PEARL RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 22-29. doi: 10.13205/j.hjgc.202307004
    [6]ZHANG Jiwen, XU Zunzhu, ZHANG Yuwei, CHEN Yuqi, JIN Xiaoxian, LIU Dong, LU Zhaoyang. LIFE CYCLE ASSESSMENT OF COORDINATED TREATMENT OF WASTE GAS POLLUTION AND CARBON REDUCTION IN ANAEROBIC POND IN A PHARMACEUTICAL FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 192-201. doi: 10.13205/j.hjgc.202303026
    [7]ZHUANG Guijia, LIU Lifan, HUANG Xiao, GAO Jingsi, ZHU Jia. NITROGEN AND PHOSPHORUS REMOVAL PERFORMANCE OF AAO-BIOFILM PROCESS FOR ELECTROPLATING WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 128-133. doi: 10.13205/j.hjgc.202212017
    [8]ZHAO Jinhui, LI Jingshun, WANG Panle, HOU Gaojie. A STUDY ON CARBON PEAKING PATHS IN HENAN, CHINA BASED ON LASSO REGRESSION-BP NEURAL NETWORK MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 151-156,164. doi: 10.13205/j.hjgc.202212020
    [9]XUE Chengjie, FANG Zhanqiang. PATH OF CARBON EMISSION PEAKING AND CARBON NEUTRALITY IN SOIL REMEDIATION INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 231-238. doi: 10.13205/j.hjgc.202208033
    [10]BAI Yu-hua, MA Lin-wei, JIA Tao, ZHANG Fan, ZHOU Yun, TANG Huai-bin, LIU Bai-cang. APPLICATION OF AAO-MBR PROCESS FOR NON-STOP CAPACITY EXPANSION AND UPGRADING OF A WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 20-24. doi: 10.13205/j.hjgc.202104004
    [11]DONG Jin-chi, WANG Xu-ying, CAI Bo-feng, WANG Jin-nan, LIU Hui, YANG Lu, XIA Chu-yu, LEI Yu. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST FOR IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 23-31,40. doi: 10.13205/j.hjgc.202110004
    [12]LIU Hui, CAI Bo-feng, ZHANG Li, WANG Zhen, CHEN Yang, XIA Chu-yu, YANG Lu, DONG Jin-chi, SONG Xiao-hui. RESEARCH ON CARBON DIOXIDE ABATEMENT TECHNOLOGIES AND COST IN CHINA'S POWER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 8-14. doi: 10.13205/j.hjgc.202110002
    [13]DONG Jin-chi, WENG Hui, PANG Ling-yun, CAI Bo-feng, LIU Hui, WANG Jin-nan, YANG Lu, XIA Chu-yu, CHEN Yang. MARGINAL ABATEMENT COST CURVES AND MITIGATION TECHNOLOGIES FOR PETROCHEMICAL AND CHEMICAL INDUSTRIES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 32-40. doi: 10.13205/j.hjgc.202110005
    [14]YANG Lu, YANG Xiu, LIU Hui, XIA Chu-yu, CAI Bo-feng, DONG Jin-chi, CHEN Yang. CARBON DIOXIDE EMISSION REDUCTION TECHNOLOGY SCREENING AND COST STUDY IN BUILDING SECTOR OF CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 41-49. doi: 10.13205/j.hjgc.202110006
    [15]ZHU Shu-ying, LIU Hui, DONG Jin-chi, CAI Bo-feng, HE Jie, YANG Lu, XIA Chu-yu, TANG Ling. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST CURVES FOR CEMENT INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 15-22. doi: 10.13205/j.hjgc.202110003
    [16]ZHANG Li, XIE Zi-xuan, CAO Li-bin, WU Qiong, CAI Bo-feng. DISCUSSION ON EVALUATION METHOD ON CARBON DIOXIDE EMISSIONS PEAKING FOR CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 1-5,43. doi: 10.13205/j.hjgc.202011001
    [17]CUI Xiu-zhen, XU Shao-dong, GAO Han-bo, WANG Jun-xia, CAI Bo-feng. REFERENCE OF URBAN AIR POLLUTANTS EMISSION PATH FOR CARBON EMISSION PEAKING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 39-43. doi: 10.13205/j.hjgc.202011007
    [18]YANG Nan, LI Yan-xia, LV Chen, ZHAO Meng, LIU Zhong-liang, LIU Hao. CARBON EMISSION ACCOUNTING AND PEAK FORECASTING OF IRON & STEEL INDUSTRY IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 44-52. doi: 10.13205/j.hjgc.202011008
    [19]Zhang Kefeng, Liu Qi, Zhang Qianwen, Yu Xiaodi, Wang Hongbo. EFFECT OF BULKING AGENT TYPE AND PROPORTION ON SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 45-48. doi: 10.13205/j.hjgc.201501011
  • Cited by

    Periodical cited type(5)

    1. 胡嘉源,王倩,吴贝贝,施维林,史广宇. 负载铵态氮对生物炭钝化土壤中镉性能的影响. 中国环境科学. 2024(03): 1418-1425 .
    2. 朱利文,任超,李竞天,田沛宜,肖建辉,李萍. 巯基改性蒙脱石对中国北方中碱性农田土壤镉钝化效果研究. 岩矿测试. 2024(01): 124-136 .
    3. 刘振超,李志雄,陆迁树,王晓娜,张松,胡耀华. 碱性过硫酸钾-紫外分光光度法测定水质总氮方法的改进. 岩矿测试. 2024(01): 114-123 .
    4. 李志娟,贺文星,张来星,刘铮,孙丹,徐淑霞. γ-聚谷氨酸改性生物炭对镉污染土壤的修复作用. 河南农业科学. 2024(08): 70-78 .
    5. 陆素芬,张高荣,伍丽娟,杨美凤,陆俊宇. 功能化共价有机框架材料对水体中汞离子的吸附性能研究. 生态与农村环境学报. 2023(08): 1059-1066 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.6 %FULLTEXT: 13.6 %META: 84.1 %META: 84.1 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 65.9 %其他: 65.9 %中卫: 1.1 %中卫: 1.1 %北京: 10.2 %北京: 10.2 %南通: 1.1 %南通: 1.1 %天津: 1.1 %天津: 1.1 %张家口: 1.1 %张家口: 1.1 %扬州: 1.1 %扬州: 1.1 %泰州: 4.5 %泰州: 4.5 %漯河: 2.3 %漯河: 2.3 %石家庄: 1.1 %石家庄: 1.1 %芒廷维尤: 8.0 %芒廷维尤: 8.0 %西宁: 1.1 %西宁: 1.1 %重庆: 1.1 %重庆: 1.1 %其他中卫北京南通天津张家口扬州泰州漯河石家庄芒廷维尤西宁重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (209) PDF downloads(4) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return