Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 38 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
LIU Nan-nan, LUO Shang-lian, SUN Hong-yu, QIU Chun-sheng, WANG Dong, CHI Jie, SUN Li-ping, NIE Ying-jin. CHARACTERISTICS OF Pt DOPED TiO2 AND TNTs PHOTOCATALYST AND COMPARISON OF THEIR PHOTOCATALYTIC PROPERTIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 63-69. doi: 10.13205/j.hjgc.202002008
Citation: LIU Nan-nan, LUO Shang-lian, SUN Hong-yu, QIU Chun-sheng, WANG Dong, CHI Jie, SUN Li-ping, NIE Ying-jin. CHARACTERISTICS OF Pt DOPED TiO2 AND TNTs PHOTOCATALYST AND COMPARISON OF THEIR PHOTOCATALYTIC PROPERTIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 63-69. doi: 10.13205/j.hjgc.202002008

CHARACTERISTICS OF Pt DOPED TiO2 AND TNTs PHOTOCATALYST AND COMPARISON OF THEIR PHOTOCATALYTIC PROPERTIES

doi: 10.13205/j.hjgc.202002008
  • Received Date: 2019-04-21
  • The photocatalysts Pt/TNTs and Pt/TiO2 were prepared by doping Pt by photodeposition method. Characterization of the catalysts was conducted by SEM, TEM, XRD and UV-Vis spectrophotometer. The effect of methanol concentration and Pt doping content on hydrogen production was investigated. And the hydrogen production efficiency of TiO2, TNTs, Pt/TiO2 and Pt/TNTs under UV-light (320~400 nm) and visible light (400~700 nm) was compared. The results showed that Pt doping shifted the photocatalysts absorbance into the visible light region. Because of the higher specific surface area of TNTs than TiO2, more Pt could be loaded, which effectively transfered electronholes to the genus, reduced the probability of recombination of electrons and electrons holes, and increased the photocatalytic effect. Pt/TNTs showed higher hydrogen production efficiency under both UV-light and visible light. Under Pt doping proportion of 1%(by mass), the hydrogen production rate of Pt/TNTs could achieve 2331 μmol/h under UV light and 137.7 μmol/h under visible light with 20% methanol solution(by volume). Compared with other literatures, the visible-light photocatalytic hydrogen production system in this study had resonable development potential.
  • loading
  • 兰隽如,周晓琴,李子富,等. 硅胶负载TiO2催化剂的制备与光催化效果[J]. 环境工程,2017,35(2):43-48.
    李仁贵. 太阳能分解水制氢最近进展:光催化、光电催化及光伏-光电耦合途径[J]. 催化学报,2017,38(1):5-12.
    NI M, LEUNG M K H, LEUNG D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production[J]. Renewable and Sustainable Energy Reviews, 2007, 11(3):401-425.
    张文博,邓德明. g-C3N4/TiO2复合光催化剂的制备及酸化改性[J]. 环境工程,2018,36(4):66-71.
    谭璞,宋亚忠,吴剑铭,等. 二维共轭碳材料/TiO2复合光催化剂制备及表征[J]. 工业催化,2019,27(2):49-53.
    张学敏,周北海,袁蓉芳,等. 金属掺杂对纳米管TiO2光催化去除水中罗丹明B的影响[J]. 环境工程,2015,33(增刊1):958-963.
    MELO M D, SILVA L A. Visible light-induced hydrogen production from glycerol aqueous solution on hybrid Pt-CdS-TiO2 photocatalysts[J]. Journal of Photochemistry and Photobiology a-Chemistry, 2011, 226(1):36-41.
    姜建辉,邓臣强,曹钰,等. Y和Si共掺杂纳米TiO2的制备及光催化性能[J]. 硅酸盐学报,2019,47(7):942-950.
    ZHANG D F. Visible light-induced photocatalysis through surface plasmon excitation of platinum-metallized titania for photocatalytic bleaching of rhodamine B[J]. Monatshefte Fur Chemie, 2012, 143(5):729-738.
    赵醒,胡彦杰,蒋洁超,等. 过渡金属原位掺杂Pt/TiO2的喷雾燃烧制备及其CO氧化性能[J]. 华东理工大学学报(自然科学版),2018,44(6):823-830.
    SHOKRI M, HOSSEINI M G, KHOSRAVI M, et al. The preparation of Pt-modified TiO2 nanoparticles via microemulsions, and their application in photocatalytic removal of an azo dye[J]. Fresenius Environmental Bulletin, 2011, 20(4A):1063-1068.
    OU H H, LO S L. Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene[J]. Journal of Molecular Catalysis a-Chemical, 2007, 275(1/2):200-205.
    OBREGóN S, COLóN G. Improved H2 production of Pt-TiO2/g-C3N4-MnOx composites by an efficient handling of photogenerated charge pairs[J]. Applied Catalysis B:Environmental, 2014,144, 775-782.
    CHOWDHURY P, MALEKSHOAR G, RAY M B, et al. Sacrificial hydrogen generation from formaldehyde with Pt/TiO2 photocatalyst in solar radiation[J]. Industrial & Engineering Chemistry Research, 2013, 52(14):5023-5029.
    徐敬博,吴音,张思源,等. 稀土元素掺杂对TiO2薄膜结构和光催化性能的影响[J]. 陶瓷学报,2019,40(1):14-17.
    卢月洁,张美,毕先均. 微波水热法制备稀土元素铒掺杂TiO2光催化剂及光催化活性[J]. 工业催化,2017,25(2):27-32.
    GALINSKA A, WALENDZIEWSKI J. Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents[J]. Energy & Fuels, 2005, 19(3):1143-1147.
    LIN Y M,REI M H. Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer[J]. International Journal of Hydrogen Energy, 25(3):211-219.
    LI C L, YUAN J, HAN B Y, et al. TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation[J]. International Journal of Hydrogen Energy, 2010,35(13):7073-7079.
    MAEDA K, HIGASHI M, LU D L, et al. Efficient nonsacrificial water splitting through two-Step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst[J]. Journal of the American Chemical Society, 2010,132(16):5858-5868.
    LV X J, FU W F, CHANG H X, et al. Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals[J]. Journal of Materials Chemistry, 2012, 22(4):1539-1546.
    YEH H M, LO S L, CHEN M J, et al. Hydrogen production from formic acid solution by modified TiO2 and titanate nanotubes in a twostep system under visible light irradiation[J]. Water Sci Technology, 2014, 69(8):1676-1681.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (211) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return