Citation: | LIANG Tao, XIE Gao-feng, MI Da-bin, JIANG Wen. PREDICTION OF PM10 CONCENTRATION BASED ON CEEMDAN-SE AND LSTM NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 107-113. doi: 10.13205/j.hjgc.202002015 |
KHANIABADI Y O, GOUDARZI G, DARYANOOSH S M, et al. Exposure to PM10, NO2, and O3 and impacts on human health[J]. Environmental Science and Pollution Research, 2017,24(3):2781-2789.
|
LI Y, CHEN Q L, ZHAO H J, et al. Variations in PM10, PM2.5 and PM10 in an urban area of the Sichuan basin and their relation to meteorological factors[J]. Atmosphere,2015,6(1):150-163.
|
VLACHOGIANNI A, KASSOMENOS P, KARPPINEN A, et al. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki[J]. Science of the Total Environment,2011,409(8):1559-1571.
|
LI W D, KONG D M, WU J. A new hybrid model FPA-SVM considering cointegration for particular matter concentration forecasting:a case study of Kunming and Yuxi, China[J]. Computational Intelligence and Neuroscience, 2017:2843651.
|
冯晓秀,高志文,李风军,等.基于LS-SVR、BP-ANN和MLR模型的PM10浓度预测[J].中国环境监测,2014,30(6):138-141.
|
DEDOVIC M M, AVDAKOVIC S, TURKOVIC I, et al. Forecasting PM10 concentrations using neural networks and system for improving air quality[J]. 2016 XI International Symposium on Telecommunications (BIHTEL), Sarajevo, 2016:1-6.
|
QU X Y, KANG X N, ZHANG C, et al. Short-term prediction of wind power based on deep Long Short-Term Memory[C]//2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi'an, 2016:1148-1152.
|
王平,张红,秦作栋,等.基于wavelet-SVM的PM10浓度时序数据预测[J].环境科学,2017,38(8):3153-3161.
|
邓翱,金敏.基于EMD的时标特征提取方法及其在短期电力负荷预测中的应用[J].计算机应用研究,2017,35(10):2952-2955.
|
秦喜文,刘媛媛,王新民,等.基于整体经验模态分解和支持向量回归的北京市PM2.5预测[J].吉林大学学报(地球科学版),2016,46(2):563-568. |
BAI Y, LI Y, WANG X X, et al. Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions[J]. Atmospheric Pollution Research,2016,7(3).:557-566.
|
郭飞,谢立勇.基于气象因素和改进支持向量机的空气质量指数预测[J].环境工程,2017,35(10):151-155.
|
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical, Physicaland Engineering Sciences,1998,454(12):903-995.
|
WU Z H, HUANG N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41.
|
RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology Heart Circulatory Physiology,2000,278(6):2039-2049.
|
GRAVES A, MOHAMED A, HINTON G. Speech recognition with deep recurrent neural networks[C]//Proceedings of International Conference on Acoustics, Speech and Signal Processing Acoustics. Vancouver, Canada:IEEE,2013:6645-6649.
|
HOCHREITE S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780.
|