Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XIANG Hong-lin, JIANG Jian-guo, GAO Yu-chen, MENG Yuan, XU Yi-wen, AIKELAIMU Aihemaiti, JU Tong-yao, HAN Si-yu, GUO Yan-ran. EFFECT OF AIR-FLOW RATE ON BIO-DRYING OF ORGANIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 128-134. doi: 10.13205/j.hjgc.202002017
Citation: XIANG Hong-lin, JIANG Jian-guo, GAO Yu-chen, MENG Yuan, XU Yi-wen, AIKELAIMU Aihemaiti, JU Tong-yao, HAN Si-yu, GUO Yan-ran. EFFECT OF AIR-FLOW RATE ON BIO-DRYING OF ORGANIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 128-134. doi: 10.13205/j.hjgc.202002017

EFFECT OF AIR-FLOW RATE ON BIO-DRYING OF ORGANIC WASTE

doi: 10.13205/j.hjgc.202002017
  • Received Date: 2019-07-15
  • The effect of air-flow rate on bio-drying was studied in the bio-drying experiments on typical organic waste. The experiment set three gradients of air-flow rate using typical organic wastes, such as fruits and vegetables, kitchen waste and garden waste as the raw materials. The comparison of temperature, moisture contents (MC) and volatile solid (VS) showed that the air-flow rate would significantly affect the bio-drying index air efficiencies and lower heating value (LHV). On the condition of lower air-flow rate, the reactor temperature rose rapidly and the air efficiency would be higher, but had poor ability to carry water vapor, which was difficult to effectively remove the moisture content; under the condition of higher air-flow rate, it was hard for the reactor to maintain higher temperature with more heat loss, but got the lowest final moisture content. At an air-flow rate of 48 L/(kg·h), the final moisture content could be reduced to 13.97%,and the bio-drying index was 2.34. The final LHV was found as high as 13932 kJ/kg, increased by 322% compared with initial one, which met the requirement of refuse derived fuel(RDF) production and improved the bio-drying effect at a lower energy consumption.
  • 中华人民共和国住房和城乡建设部. 中国城乡建设统计年鉴[G]. 2017.
    张军文, 沈建. 城市果蔬垃圾处理现状及再利用对策[J]. 安徽农业科学, 2017, 45(36):41-43.
    MOHAMMED M, OZBAY I, DURMUSOGLU E. Bio-drying of green waste with high moisture content[J]. Process Safety and Environmental Protection, 2017, 111:420-427.
    HE P J, ZHAO L, ZHENG W, et al. Energy balance of a biodrying process for organic wastes of high moisture content:a review[J]. Drying Technology, 2013, 31(2):132-145.
    YUAN J, ZHANG D F, LI Y, et al. Effects of adding bulking agents on biostabilization and drying of municipal solid waste[J]. Waste Management, 2017, 62:52-60.
    ZHOU H B, CHEN T B, GAO D, et al. Simulation of water removal process and optimization of aeration strategy in sewage sludge composting[J]. Bioresource Technology, 2014, 171:452-460.
    赵进. 城市生活垃圾生物干化工艺优化设计研究[D]. 武汉:武汉理工大学, 2015.
    余旺, 黄绍松, 孙水裕, 等. 接种菌剂和外加能源对污泥生物干化效果的影响[J]. 环境污染与防治, 2012, 34(8):39-43.
    MOHAMMED M, DONKOR A, OZBAY I. Bio-drying of biodegradable waste for use as solid fuel:a sustainable approach for green waste management[J]. Agricultural Waste and Residues, 2018.
    ZHANG D F, LUO W H, YUAN J, et al. Co-biodrying of sewage sludge and organic fraction of municipal solid waste:role of mixing proportions[J]. Waste Management, 2018, 77:333-340.
    LIU H T, WANG Y W, LIU X J, et al. Reduction in greenhouse gas emissions from sludge biodrying instead of heat drying combined with mono-incineration in China[J]. Journal of the Air & Waste Management Association, 2017, 67(2):212-218.
    TOM A P, PAWELS R, HARIDAS A. Biodrying process:a sustainable technology for treatment of municipal solid waste with high moisture content[J]. Waste Management, 2016, 49:64-72.
    TAMBONE F, SCAGLIA B, SCOTTI S, et al. Effects of biodrying process on municipal solid waste properties[J]. Bioresource Technology, 2011, 102(16):7443-7450.
    YUAN J, ZHANG D F, LI Y, et al. Effects of the aeration pattern, aeration rate, and turning frequency on municipal solid waste biodrying performance[J]. Journal of Environmental Management, 2018, 218:416-424.
    SONG X, MA J, GAO J D, et al. Optimization of bio-drying of kitchen waste:inoculation, initial moisture content and bulking agents[J]. Journal of Material Cycles and Waste Management, 2017, 19(1):496-504.
    YANG B Q, HAO Z D, JAHNG D. Advances in biodrying technologies for converting organic wastes into solid fuel[J]. Drying Technology, 2017, 35(16):1950-1969.
    VELIS C A, LONGHURST P J, DREW G H, et al. Biodrying for mechanical-biological treatment of wastes:A review of process science and engineering[J]. Bioresource Technology, 2009, 100(11):2747-2761.
    李春萍, 蔡先明, 秦侠, 等. 通风、翻堆和添加剂对垃圾生物干化和臭气排放的影响[J]. 环境工程, 2014, 32(3):83-86.
    YU D W, YANG M, QI L, et al. Effects of aeration on matrix temperature by infrared thermal imager and computational fluid dynamics during sludge bio-drying[J]. Water Research, 2017, 122:317-328.
    COLOMER-MENDOZA E J, HERRERA-PRATS L, ROBES-MARTINEZ F, et al. Effect of airflow on biodrying of gardening wastes in reactors[J]. Journal of Environmental Sciences, 2013, 25(5):865-872.
    FREI K M, CAMERON D, STUART P R. Novel drying process using forced aeration through a porous biomass matrix[J]. Drying Technology, 2004, 22(5):1191-1215.
    WU Z Y, CAI LU, KRAFFT THOMAS, et al. Biodrying performance and bacterial community structure under variable and constant aeration regimes during sewage sludge biodrying[J]. Drying Technology, 2017, 36(1):84-92.
    ZHAO L, GU W M, SHAO L M, et al. Sludge bio-drying process at low ambient temperature:effect of bulking agent particle size and controlled temperature[J]. Drying Technology, 2012, 30(10):1037-1044.
    MA J, ZHANG L, MU L, et al. Thermally assisted bio-drying of food waste:synergistic enhancement and energetic evaluation[J]. Waste Management, 2018, 80:327-338.
    ZHANG D Q, HE P J, JIN T F, et al. Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation[J]. Bioresource Technology, 2008, 99(18):8796-8802.
    MA J, ZHANG L, LI A M. Energy-efficient co-biodrying of dewatered sludge and food waste:synergistic enhancement and variables investigation[J]. Waste Management, 2016, 56:411-422.
    HUILINIR C, VILLEGAS M. Simultaneous effect of initial moisture content and airflow rate on biodrying of sewage sludge[J]. Water Research, 2015, 82:118-128.
    VILLEGAS M, HUILINIR C. Biodrying of sewage sludge:kinetics of volatile solids degradation under different initial moisture contents and air-flow rates[J]. Bioresource Technology, 2014, 174:33-41.
    SEN R, ANNACHHATRE A P. Effect of air flow rate and residence time on biodrying of cassava peel waste[J]. Internation Journal of Environmental Technology & Management, 2015, 18(1):9-29.
    YANG B Q, ZHANG L, JAHNG D. Importance of initial moisture content and bulking agent for biodrying sewage sludge[J]. Drying Technology, 2014, 32(2):135-144.
    ADANI F, BAIDO D, CALCATERRA E, et al. The influence of biomass temperature on biostabilization-biodrying of municipal solid waste[J]. Bioresource Technology, 2002, 83(3):173-179.
    赵卫兵, 汪家权, 胡淑恒, 等. 城市垃圾生物干化最佳工艺参数的优化研究[J]. 环境工程, 2015, 33(8):97-100.
    SUGNI M, CALCATERRA E, ADANI F. Biostabilization-biodrying of municipal solid waste by inverting air-flow[J]. Bioresource Technology, 2005, 96(12):1331-1337.
    ZHAO S Q, HUANG W X, YIN R, et al. The effect of bio-drying pretreatment on heating values of municipal solid waste[J]. Advanced Materials Research, 2014, 1010-1012:537-546.
    SHAO L M, HE X, YANG N, et al. Biodrying of municipal solid waste under different ventilation modes:drying efficiency and aqueous pollution[J]. Waste Management & Research, 2012, 30(12):1272-1280.
    何品晶, 邵立明. 固体废物管理[M]. 北京:高等教育出版社, 2004.
    SLEZAK R, KRZYSTEK L, LEDAKOWICZ S. Biological drying of municipal solid waste from landfill[J]. Drying Technology, 2019, 15:189-199.
    李玉龙, 蔡文倍, 李登新. 碳氮比对垃圾干化及能源化利用的影响[J]. 环境工程学报, 2017, 11(6):3773-3779.
    袁京, 张地方, 李赟, 等. 外加碳源对厨余垃圾生物干化效果的影响[J]. 中国环境科学, 2017, 37(2):628-635.
  • Relative Articles

    [1]LIAO Xun, LI Yancheng, ZHANG Yuduo, YANG Qilin, LI Jiang. RESEARCH ON GROUNDWATER NITRATE REDUCTION EFFICIENCY BASED ON METHANOTROPH AND FUNCTIONAL MICROORGANISMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 113-120. doi: 10.13205/j.hjgc.202402013
    [2]REN Lifang, GONG Youkui, SUN Hongwei. CHARACTERISTICS OF DENITRIFYING PHOSPHORUS REMOVAL AND N2O EMISSION OF AN AOA-SBR UNDER DIFFERENT CARBON TO NITROGEN RATIOS (C/N)[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 1-9. doi: 10.13205/j.hjgc.202405001
    [3]ZENG Jinyong, KE Shuizhou, YUAN Huizhou, ZHU Liang, MA Jingwei, YUAN Jiajia. EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012
    [4]LIU Yu-long, ZHANG Zhi-feng, ZHANG Li, ZHANG Zhe, QIN Lu, CHAI Guo-dong, ZHENG Xing, WANG Dong-qi. EFFECT OF INFLUENT CONDITIONS ON PERFORMANCE AND MICROORGANISMS IN THE SIDE-STREAM ACTIVATED SLUDGE HYDROLYSIS PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 146-151,158. doi: 10.13205/j.hjgc.202205021
    [5]NIU Yongjian, DONG Kun, NIU Hongliang, XIN Mingxing, LI Weiwei, SUN Hongwei. EFFECT OF FREE AMMONIA ON PHOSPHORUS REMOVAL EFFICIENCY AND MICROBIAL COMMUNITY STRUCTURE IN AN EBPR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 24-31. doi: 10.13205/j.hjgc.202210004
    [6]YAN Duosen, YANG Wen, LI Shanshan, JIAO Yan, ZHANG Guodong, CHEN Qinghua, LI Yun. EFFECT OF SULFAMETHOXAZOLE ON NITROGEN REMOVAL AND MICROBIAL COMMUNITY OF SEQUENCING BATCH BIOREACTORS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 15-23,70. doi: 10.13205/j.hjgc.202210003
    [7]LUO Xiao-nan, YANG Yi-qing, ZHANG Nan, MENG Fan-gang. PERFORMANCE OF NITROGEN REMOVAL AND MICROBIAL INTERACTION IN A TWO-STAGE DYNAMIC MEMBRANE BIOREACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 108-115. doi: 10.13205/j.hjgc.202107013
    [8]LI Yong, YUAN Hui-zhou, KE Shui-zhou, ZHU Liang, LI Zhan-peng. EFFECTS OF MICROBIAL CARRIERS ON PERFORMANCE AND MICROBIAL COMMUNITY STRUCTURE OF MBBR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 100-106. doi: 10.13205/j.hjgc.202112015
    [9]ZHU Bin, CHEN Deng-mei, KANG Ti, KE An. THE INFLUENCE OF WETLAND PLANTS ON PURIFICATION ABILITIES OF ECOFILTER ON URBAN SEWAGE AND IT’S MICROBIAL COMMUNITY STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 85-90. doi: 10.13205/j.hjgc.202011014
    [10]ZHAO Jie, HE Yu-hong, ZHANG Xiao-ming, LI Qi, YANG Wei-chun. EFFECT ON Cr(Ⅵ) ADSORPTION PERFORMANCE OF ACID-BASE MODIFIED BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 28-34. doi: 10.13205/j.hjgc.202006005
    [11]ZHAO Min-juan, SHEN Yuan-yuan, GAO Tian-peng, YAN Jia-cong, YANG Ji-huan. EFFECT OF BROMINATED FLAME RETARDANT ON BIOLOGICAL NITROGEN AND PHOSPHORUS REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 49-53,111. doi: 10.13205/j.hjgc.202012009
    [17]Ding Min, Huang Yong, Yuan Yi. DEVELOPMENT OF PERFORMANCE,MODEL AND MICROBIAL COMMUNITY OF SIMULATANEOUS BIOLOGICAL NITROGEN AND SULFUR REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 42-46. doi: 10.13205/j.hjgc.201508010
    [18]Wang Yadong, Wang Shaopo, Zheng Shasha, Zhang Yan, Sun Liping, Du Jinshan. POLY-P ACCUMULATING MICROORGANISMS AND IDENTIFYING METHODS FOR BIOLOGICAL PHOSPHORUS REMOVAL SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 21-26. doi: 10.13205/j.hjgc.201502005
    [19]RESEARCH PROGRESS OF THE METABOLIC CONTROL OF CO_2 AND ITS EFFECT ON SALT TOLERANCE ABILITY OF THE MICROORGANISM[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 167-171. doi: 10.13205/j.hjgc.201412031
  • Cited by

    Periodical cited type(3)

    1. 吕明泽,李迪林,高文龙,侯胜鹏,王亚琪,陈萌. 典型重金属离子对SBR脱氮工艺及COD去除的影响研究进展. 市政技术. 2023(03): 176-181+190 .
    2. 王悦静,袁胜煜. Ni~(2+)浓度变化对厌氧污泥胞外聚合物的影响. 净水技术. 2023(11): 112-119 .
    3. 沈怡雯. 高效沉淀池在污水处理厂UNITANK工艺强化除磷中的应用. 净水技术. 2019(S1): 139-142 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.0 %FULLTEXT: 16.0 %META: 82.8 %META: 82.8 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 23.6 %其他: 23.6 %China: 0.4 %China: 0.4 %Rijeka: 1.2 %Rijeka: 1.2 %东莞: 0.8 %东莞: 0.8 %临汾: 0.8 %临汾: 0.8 %保定: 0.4 %保定: 0.4 %北京: 3.2 %北京: 3.2 %南京: 1.2 %南京: 1.2 %南通: 0.4 %南通: 0.4 %台州: 1.2 %台州: 1.2 %合肥: 2.4 %合肥: 2.4 %大同: 0.4 %大同: 0.4 %常德: 0.4 %常德: 0.4 %张家口: 0.8 %张家口: 0.8 %成都: 0.4 %成都: 0.4 %扬州: 0.4 %扬州: 0.4 %拉贾斯坦邦: 0.4 %拉贾斯坦邦: 0.4 %昆明: 0.4 %昆明: 0.4 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.4 %朝阳: 0.4 %杭州: 0.8 %杭州: 0.8 %济源: 0.4 %济源: 0.4 %海口: 0.4 %海口: 0.4 %湖州: 0.4 %湖州: 0.4 %漯河: 1.2 %漯河: 1.2 %石家庄: 0.4 %石家庄: 0.4 %耶拿: 2.4 %耶拿: 2.4 %芒廷维尤: 43.2 %芒廷维尤: 43.2 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.4 %苏州: 0.4 %衢州: 0.4 %衢州: 0.4 %西宁: 4.0 %西宁: 4.0 %贵阳: 0.4 %贵阳: 0.4 %运城: 2.4 %运城: 2.4 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.4 %郑州: 0.4 %重庆: 0.4 %重庆: 0.4 %金华: 0.4 %金华: 0.4 %长治: 0.4 %长治: 0.4 %阜阳: 0.4 %阜阳: 0.4 %其他ChinaRijeka东莞临汾保定北京南京南通台州合肥大同常德张家口成都扬州拉贾斯坦邦昆明晋城朝阳杭州济源海口湖州漯河石家庄耶拿芒廷维尤芝加哥苏州衢州西宁贵阳运城遵义邯郸郑州重庆金华长治阜阳

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (207) PDF downloads(3) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return