Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 38 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
ZHAO Bin, LIU Bin. APPLICATION OF STACKING IN GROUND-LEVEL PM2.5 CONCENTRATION ESTIMATING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 153-159. doi: 10.13205/j.hjgc.202002022
Citation: ZHAO Bin, LIU Bin. APPLICATION OF STACKING IN GROUND-LEVEL PM2.5 CONCENTRATION ESTIMATING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 153-159. doi: 10.13205/j.hjgc.202002022

APPLICATION OF STACKING IN GROUND-LEVEL PM2.5 CONCENTRATION ESTIMATING

doi: 10.13205/j.hjgc.202002022
  • Received Date: 2019-06-13
  • In order to solve the problem that the ground PM2.5 measurement was limited in spatial and temporal coverage, satellite aerosol optical depth AOD with wide spatial-temporal coverage and stacking method were proposed to establish a PM2.5 concentration estimation model. The AOD and meteorological parameter and PM2.5 emissions related data were trained for building the model, and the improved grid search algorithm was used to optimize the hyperparameters of each model. Based on multi-collinearity analysis, the optimal PM2.5 concentration estimation model based on Stacking was established. The data between January 1st, 2016 to December 31st, 2016, was selected as the experimental object. The experimental results showed that the performance of the stacking model using ridge regression as the meta-learner was better than that of the random forest, GBRT and XGBoost model. It was concluded that the stacking model was applicable for air pollution monitoring in a large geographical area.
  • loading
  • 亢红霞,那晓东,臧淑英. 基于卫星遥感数据(AOD)估算PM2.5的研究进展[J]. 环境科学与管理, 2016, 41(2):30-34.
    KAUFMAN Y J, TANRÉ D, REMER L A, et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer[J]. Journal of Geophysical Research Atmospheres, 1997,102(27):17-51.
    毛节泰, 李成才. MODIS卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比[J]. 应用气象学报, 2002,13(1):127-135.
    XI X, WEI Z, RUI X G, et al. A comprehensive evaluation of air pollution prediction improvement by a machine learning method[C]//IEEE International Conference on Service Operations & Logistics. IEEE, 2016.
    GUPTA P, CHRISTOPHER S A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products:multiple regression approach[J]. Journal of Geophysical Research Atmospheres, 2009,114(20).
    LIU Y, CAO G F, ZHAO N Z, et al. Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach[J]. Environmental Pollution, 2018,235:272-282.
    HU X F, WALLER L A, AL-HAMDAN M Z, et al. Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression[J]. Environmental Research, 2013, 121(2):1-10.
    FANG X, ZOU B, LIU X P, et al. Satellite-based ground PM2.5 estimation using timely structure adaptive modeling[J]. Remote Sensing of Environment, 2016, 186:152-163.
    LI T W, SHEN H F, YUAN Q Q, et al. Estimating ground-level PM2.5 by fusing satellite and station observations:a geo-intelligent deep learning approach[J]. Geophysical Research Letters, 2017, 44(23).
    张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报(工学版), 2018, 48(5):47-54.
    张笑铭,王志君,梁利平. 一种适用于卷积神经网络的Stacking算法[J]. 计算机工程, 2018, 44(4):243-247.
    CHEN J, LU J, AVISE J C, et al. Seasonal modeling of PM2.5 in California's San Joaquin Valley[J]. Atmospheric Environment, 2014, 92:182-190.
    ZHANG C, NI Z W, NI L P. Multifractal detrended cross-correlation analysis between PM2.5 and meteorological factors[J]. Physica A:Statistical Mechanics and its Applications, 2015, 438:114-123.
    温博文,董文瀚,解武杰,等. 基于改进网格搜索算法的随机森林参数优化[J]. 计算机工程与应用, 2018, 54(10):154-157.
    CHEN Z H, CHENG S Y, LI J B, et al. Relationship between atmospheric pollution processes and synoptic pressure patterns in northern China[J]. Atmospheric Environment, 2008, 42(24):6078-6087.
    陈楠,操文祥,丁青青,等. 湖北省PM2.5与PM10比值分析及PM2.5时空分布特征研究[J]. 环境科学与管理, 2017, 42(1):98-102.
    王婷. 长株潭地区PM2.5时空分布研究[D].湘潭:湖南科技大学,2016.
    王振波, 方创琳, 许光, 等. 2014年中国城市PM2.5浓度的时空变化规律[J]. 地理学报, 2015, 70(11):1720-1734.
    李沈鑫, 邹滨, 刘兴权, 等. 2013-2015年中国PM2.5污染状况时空变化[J]. 环境科学研究, 2017,30(5):678-687.
    姜磊, 周海峰, 赖志柱, 等. 中国城市PM2.5时空动态变化特征分析:2015-2017年[J]. 环境科学学报, 2018, 38(10):33-42.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (203) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return