Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 38 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
LI Si-qi, LIU Yang, DU Ming-yi, ZHANG Min, XIN Chao, YAO Yi, MA Teng-yue. CONSTRUCTION AND OPTIMIZATION OF SAMPLE SET OF CONSTRUCTION WASTE DUMP[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 39-45,8. doi: 10.13205/j.hjgc.202003007
Citation: LI Si-qi, LIU Yang, DU Ming-yi, ZHANG Min, XIN Chao, YAO Yi, MA Teng-yue. CONSTRUCTION AND OPTIMIZATION OF SAMPLE SET OF CONSTRUCTION WASTE DUMP[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 39-45,8. doi: 10.13205/j.hjgc.202003007

CONSTRUCTION AND OPTIMIZATION OF SAMPLE SET OF CONSTRUCTION WASTE DUMP

doi: 10.13205/j.hjgc.202003007
  • Received Date: 2019-11-07
  • The unregulated stacking of urban construction waste endangered the environment and the safety of citizens. In order to identify the stacking points of construction waste, aiming at the problem that there was no stacking point sample set for construction waste, this paper used the pixel based remote sensing classification method to build a sample set. On this basis, the adaptive histogram averaging, CS-LBP operator constraints and migration learning were combined to optimize the Wasserstein generative adversarial networks(WGAN) and generate samples to expand the sample set. The experimental results showed that the pixel based remote sensing classification method improved the efficiency of the artificial sample set, and the WGAN optimized method could effectively inherit the color and texture features of the original data to meet the needs of expanding the sample set.
  • loading
  • 杨壮. 面向Bin Picking的虚拟样本集构建及智能识别方法的研究[D].上海:华东理工大学,2019.
    鄢文苗,任东,黄应平,等.基于SVM土壤重金属污染评价的训练样本集构建[J].武汉大学学报(理学版),2019,65(3):316-322.
    陈泓佑,和红杰,陈帆,等.基于子样本集构建的DCGANs训练方法[J/OL].自动化学报:1-10[2019-10-09

    ].https://doi.org/10.16383/j.aas.c180677.
    赵树阳, 李建武. 基于生成对抗网络的低秩图像生成方法[J]. 自动化学报, 2018, 44(5):829-839.
    牛斌,吴鹏,马利,等.一种基于生成对抗网络的行为样本集扩展方法[J].计算机技术与发展,2019(7):43-48.
    SWAIN M J, BALLARD D H. Color indexing[J]. International Journal of Computer Vision, 1991, 7(1): 11-32.
    庄福振, 罗平, 何清, 等. 迁移学习研究进展[J].软件学报,2015, 26(1): 26-39.
    JIANG J, ZHAI C X. A two-stage approach to domain adaptation for statistical classifiers[C]//The 16th ACM Conf. on Information and Knowledge Management. New York: ACM Press, 2007: 401-410.
    FANG M, YIN J, ZHU X Q. Transfer learning across networks for collective classification[C]//The 2013 IEEE 13th Int’l Conf. on Data Mining, 2013: 161-170.
    DAI W Y, XUE G R, YANG Q, et al. Co-Clustering based classification for out-of-domain documents[C]//The 13th ACM Int’l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2007: 210-219.
    DAI W Y, JIN O, XUE G R, et al. Eigentransfer: a unified framework for transfer learning[C]//The 24th Int’l Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2009: 193-200.
    YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//The 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose,USA, 2010.
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3:2672-2680.
    ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[EB/OL]. https://arxiv.org/pdf/1701.07875.pdf. 2018-02-23.
    HEIKKIL M, PIETIK I, NEN M, et al. Description of Interest Regions with Local Binary Patterns[J].Pattern Recognition,2009,42(3):425-436.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (195) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return