Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YANG De-yu, HAO Qing-lan, ZHAO Chen-chen, YAN Ning-na, DOU Bao-juan. CATALYTIC DEGRADATION PERFORMANCE OF TOLUENE OVER CuxMn1-xCe0.75Zr0.25Oy[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 96-100. doi: 10.13205/j.hjgc.202101014
Citation: LI Yi-huan, XI Lei-lei, ZHONG Yi-jie, HU Yu, ZHANG Hui-min, WU Zhen-yu. OPERATION EFFECT AND CONTROL SCHEME OPTIMIZATION OF AN INVERTED A2/O PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 76-81,26. doi: 10.13205/j.hjgc.202003013

OPERATION EFFECT AND CONTROL SCHEME OPTIMIZATION OF AN INVERTED A2/O PROCESS

doi: 10.13205/j.hjgc.202003013
  • Received Date: 2019-01-10
  • Take the inverted A2/O process of the municipal sewage treatment plant as the research object, this paper introduced the basic situation, main design parameters and technical characteristics of the process, and analyzed water quality test data of the past two years. The results showed that the inverted A2/O process could effectively remove COD and BOD5, and the function of nitrogen and phosphorus removal was notable. An optimal control scheme for the carbon source dosing point, the sludge external reflux ratio and the DO at the end of the aeration tank, was proposed. In summer and autumn, the external reflux ratio of sludge was controlled in 60%~75%, the reflux ratio of nitrifying liquid in 100%~150%, and the DO at the end of aeration tank in 1.5~3.0 mg/L. In winter and spring, the external sludge reflux ratio was controlled in 120%~150%, the nitrification liquid reflux ratio in 200%~250%, and the aeration tank end DO in 3.0~5.0 mg/L, all of which could obtain better pollutant removal effect as follows: the effluent COD average value was 26.1 mg/L, the removal rate was 90.4%, the effluent TN average value was 7.69 mg/L, the removal rate was 78.1%, the effluent ammonia nitrogen average value was 0.445 mg/L, and the removal rate was 98.3%.Phosphorus removal was achieved by changing the addition point of phosphorus removal agents and building an automated chemical dosing system. Then the actual dosage of the phosphorus removal agent was reduced obviously to 2.5 t/d, and the TP average of the effluent was 0.194 mg/L, with a removal rate of 96.7%.
  • 张波,戚永洁,蒋素英,等.铁碳微电解-生物膜法-高级氧化工艺处理印染废水中试研究[J].环境工程,2018,36(3):44-48.
    蔡效猛,郑雨.印染废水处理技术研究进展[J].印染助剂,2018,35(3):5-8.
    高融,张进,孟平.MBR平板膜在机械加工废水中应用及清洗研究[J].水处理技术,2017,43(2):134-135.
    林明,张石伟,李京军,等.机械加工过程产生含油污水的组合处理技术研究[J].环境工程,2010,28(5):1-4.
    王华山,陈庆杰,于秀春.食品发酵污水沼气回收利用技术[J].食品工业,2018,39(9):213-215.
    阮智宇,郑凯凯,苏挥,等.CAST工艺运行诊断和优化调控分析[J].中国给水排水,2015,31(20):50-54.
    姚宁波,殷成强.A2O污水处理工艺的运行过程及控制述评[J].环保科技,2017,23(4):60-64.
    毕学军,张波.倒置A2/O工艺生物脱氮除磷原理及其生产应用[J].环境工程,2006(3):29-30,9

    ,3.
    李亚静,孙力平.常规A2/O工艺和倒置A2/O工艺处理城市污水比较研究[J].环境工程,2015,33(增刊1):967-970.
    郭玉梅,吴毅辉,郭昉,等.某污水厂A2O和倒置A2O工艺脱氮除磷性能分析[J].环境工程学报,2015,9(5):2185-2190.
    环境保护总局,国家质量监督检验检疫总局.城镇污水处理厂污染物排放标准:GB 18918-2002[S].北京:中国环境出版社,2002.
    张硕,邹伟国.多点进水的倒置AAO工艺处理低碳源城市合流污水[J].环境科技,2014,27(1):11-14.
    李茂侨,陈志强,温沁雪.延长缺氧水力停留时间对A-AAO工艺氮磷去除影响的研究[J].环境科学与管理,2018,43(1):102-107.
    杨思敏,齐嵘,杨敏.低温对生物接触氧化反应器硝化性能的影响[J].环境工程学报,2018,12(11):3028-3033.
    郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社, 1998.
    胡朝晖,余健,刘钢,等.反硝化生物滤池除污性能及水头损失变化规律[J].中国给水排水,2014,30(11):14-18.
  • Relative Articles

    [1]YAO Haiqian, GUO Xinchao, FU Fengman, YANG Hao, GUO Xiang, ZHANG Fanghong. Mn-Fe-Ce/GAC CATALYZED OZONE OXIDATION TECHNOLOGY FOR ANILINE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 28-34. doi: 10.13205/j.hjgc.202405004
    [2]LI Ru, LI Xiaokang, FENG Yan, WANG Xueyan, XING Qianyun. DEGRADATION OF XYLENE BY DBD PLASMA IN COLLABORATION WITH Mn-TiO2/γ-Al2O3 CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 157-166. doi: 10.13205/j.hjgc.202404019
    [3]WANG Chengcheng, LI Qian, ZHAO Shuguang, SONG Leshan, LIU Hua, ZHANG Ying, LIU Si. PREPARATION AND ELECTRO-CATALYTIC PERFORMANCE OF LEAD-ANTIMONY ELECTRODE WITH A TIN-ANTIMONY INTERMEDIATE LAYER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 92-98. doi: 10.13205/j.hjgc.202403011
    [4]LI Haicheng, CHENG Cheng, CHEN Zhenglin, YANG Lixia, LUO Shenglian. SULFIDE ION DOPING PROMOTES EFFICIENT PHOTOCATALYTIC DEGRADATION OF TOLUENE BY WO3 NANOWIRES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 201-210. doi: 10.13205/j.hjgc.202409019
    [5]WU Xinming, AN Hao, ZHAO Junyu, OU Zixuan, HAO Liangshan, LI Chao. PREPARATION OF Fe/Mn-PAC CATALYSTS AND DEGRADATION OF REACTIVE BRILLIANT BLUE KN-R BY CATALYTIC OZONATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 32-39. doi: 10.13205/j.hjgc.202304005
    [6]YANG Jiani, ZHAO Baowei, YANG Maoying, SUO Jinmiao, ZHU Zhengyu, DENG Aiqin. PREPARATION OF Fe/C CATALYST BASED ON FERRIC CITRATE AND ITS ACTIVATION PERFORMANCE ON PEROXYDISULFATE TO DEGRADE SULFADIAZINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 116-123,251. doi: 10.13205/j.hjgc.202307016
    [7]ZHAO Ying, LIU Qingliang, WANG Shuo, SUN Zhiqiang, MA Jun. MECHANISM OF PEROVSKITE LaBO3 CATALYZED PEROXYACETIC ACID DEGRADATION OF BISPHENOL A IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 1-10. doi: 10.13205/j.hjgc.202312001
    [8]LIU Dong, QI Junwen, XU Zunzhu, ZHANG Jiwen, JIN Xiaoxian, LI Jiansheng. ADSORPTION PERFORMANCE OF TOLUENE ON HYDROPHOBIC MODIFIED MOLECULAR SIEVES UNDER HIGH HUMIDITY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 66-72,81. doi: 10.13205/j.hjgc.202302010
    [9]FENG Chao, XIONG Gaoyan, WANG Yunxia, PAN Yuan, LIU Yunqi. SYNTHESIS OF CuO-Cu1.5Mn1.5O4 COMPOSITE OXIDE BY USING A BIMETALLIC ORGANIC FRAMEWORK FOR CATALYTIC PROPANE TOTAL OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 69-77. doi: 10.13205/j.hjgc.202208009
    [10]ZHANG Shicheng, LI Simin, ZHU Jia. DEGRADATION OF METHYL ORANGE BY CuO/g-C3N4 ACTIVATED PEROXODISULFATE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 40-48. doi: 10.13205/j.hjgc.202210006
    [11]SHANG Xiao-han, ZHU Xiao-biao. HETEROGENEOUS FENTON DEGRADATION OF BENZOTRIAZOLE IN WATER BY Fe/Cu/ZEOLITE CATALYST AT NEUTRAL pH VALUE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 10-15. doi: 10.13205/j.hjgc.202102002
    [12]ZHANG Kai, YANG Shi-chao, LUO Min, WU Yan-heng, YU Su-ying. PREPARATION OF NANO-SHEET ZSM-5 ZEOLITE AND ITS ADSORPTION PROPERTIES FOR INDOOR ENVIRONMENT VOCs[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 60-64,74. doi: 10.13205/j.hjgc.202001009
  • Cited by

    Periodical cited type(7)

    1. 黄威翔,高川作,吴波,陈坦,杨婷,张冰. 基于STIRPAT模型的广西碳达峰路径. 环境科学. 2025(02): 682-695 .
    2. 姜江. 水泥工业碳排放的影响因素量化研究. 环境科学与管理. 2025(02): 52-55+88 .
    3. 王思琪. 基于GDIM的京津冀公共建筑碳排放影响因素分析. 上海节能. 2025(03): 404-413 .
    4. 李菲菲,徐绘薇,崔金栋. 基于STIRPAT模型的吉林省石化行业碳排放影响因素研究. 综合智慧能源. 2024(08): 12-19 .
    5. 李艳芳,张蒙悯,吴桂君,蒋嘉伟,方芳. 河北省建筑业碳排放脱钩及影响因素研究. 河北企业. 2024(09): 59-63 .
    6. 吴永江. 基于LMDI模型的高铁客运站碳排放关键驱动因素研究. 铁道建筑技术. 2024(09): 29-31+64 .
    7. 高立兵. 基于LMDI的甘肃省工业碳排放现状及影响因子分解研究. 科技创新与生产力. 2024(10): 67-70 .

    Other cited types(27)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.0 %FULLTEXT: 28.0 %META: 71.0 %META: 71.0 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.8 %其他: 10.8 %China: 0.3 %China: 0.3 %[]: 0.3 %[]: 0.3 %临汾: 0.1 %临汾: 0.1 %北京: 1.6 %北京: 1.6 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.4 %南通: 0.4 %卡拉奇: 0.3 %卡拉奇: 0.3 %台州: 0.1 %台州: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %太原: 0.9 %太原: 0.9 %宣城: 0.1 %宣城: 0.1 %常德: 0.1 %常德: 0.1 %广州: 0.7 %广州: 0.7 %张家口: 0.4 %张家口: 0.4 %成都: 0.3 %成都: 0.3 %扬州: 0.3 %扬州: 0.3 %昆明: 0.4 %昆明: 0.4 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.4 %杭州: 0.4 %武汉: 0.1 %武汉: 0.1 %济源: 0.3 %济源: 0.3 %湖州: 0.6 %湖州: 0.6 %漯河: 0.1 %漯河: 0.1 %芒廷维尤: 72.0 %芒廷维尤: 72.0 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.1 %苏州: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 3.4 %西宁: 3.4 %贵阳: 0.1 %贵阳: 0.1 %运城: 1.3 %运城: 1.3 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.4 %郑州: 0.4 %重庆: 0.1 %重庆: 0.1 %长沙: 0.3 %长沙: 0.3 %长治: 0.1 %长治: 0.1 %青岛: 0.4 %青岛: 0.4 %其他China[]临汾北京南宁南昌南通卡拉奇台州咸阳哈尔滨嘉兴太原宣城常德广州张家口成都扬州昆明晋城朝阳杭州武汉济源湖州漯河芒廷维尤芝加哥苏州衢州西宁贵阳运城遵义邯郸郑州重庆长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (589) PDF downloads(19) Cited by(34)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return