Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHANG Xiuhong, LI Renge, ZHAO Yueshuai, GAO Linting, NING Bo. ANALYSIS OF DIFFUSE POLLUTION CHARACTERISTICS IN AGRICULTURAL SPACE IN XI'AN BASED ON DPeRS MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 142-149. doi: 10.13205/j.hjgc.202312017
Citation: LI Yi-huan, XI Lei-lei, ZHONG Yi-jie, HU Yu, ZHANG Hui-min, WU Zhen-yu. OPERATION EFFECT AND CONTROL SCHEME OPTIMIZATION OF AN INVERTED A2/O PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 76-81,26. doi: 10.13205/j.hjgc.202003013

OPERATION EFFECT AND CONTROL SCHEME OPTIMIZATION OF AN INVERTED A2/O PROCESS

doi: 10.13205/j.hjgc.202003013
  • Received Date: 2019-01-10
  • Take the inverted A2/O process of the municipal sewage treatment plant as the research object, this paper introduced the basic situation, main design parameters and technical characteristics of the process, and analyzed water quality test data of the past two years. The results showed that the inverted A2/O process could effectively remove COD and BOD5, and the function of nitrogen and phosphorus removal was notable. An optimal control scheme for the carbon source dosing point, the sludge external reflux ratio and the DO at the end of the aeration tank, was proposed. In summer and autumn, the external reflux ratio of sludge was controlled in 60%~75%, the reflux ratio of nitrifying liquid in 100%~150%, and the DO at the end of aeration tank in 1.5~3.0 mg/L. In winter and spring, the external sludge reflux ratio was controlled in 120%~150%, the nitrification liquid reflux ratio in 200%~250%, and the aeration tank end DO in 3.0~5.0 mg/L, all of which could obtain better pollutant removal effect as follows: the effluent COD average value was 26.1 mg/L, the removal rate was 90.4%, the effluent TN average value was 7.69 mg/L, the removal rate was 78.1%, the effluent ammonia nitrogen average value was 0.445 mg/L, and the removal rate was 98.3%.Phosphorus removal was achieved by changing the addition point of phosphorus removal agents and building an automated chemical dosing system. Then the actual dosage of the phosphorus removal agent was reduced obviously to 2.5 t/d, and the TP average of the effluent was 0.194 mg/L, with a removal rate of 96.7%.
  • 张波,戚永洁,蒋素英,等.铁碳微电解-生物膜法-高级氧化工艺处理印染废水中试研究[J].环境工程,2018,36(3):44-48.
    蔡效猛,郑雨.印染废水处理技术研究进展[J].印染助剂,2018,35(3):5-8.
    高融,张进,孟平.MBR平板膜在机械加工废水中应用及清洗研究[J].水处理技术,2017,43(2):134-135.
    林明,张石伟,李京军,等.机械加工过程产生含油污水的组合处理技术研究[J].环境工程,2010,28(5):1-4.
    王华山,陈庆杰,于秀春.食品发酵污水沼气回收利用技术[J].食品工业,2018,39(9):213-215.
    阮智宇,郑凯凯,苏挥,等.CAST工艺运行诊断和优化调控分析[J].中国给水排水,2015,31(20):50-54.
    姚宁波,殷成强.A2O污水处理工艺的运行过程及控制述评[J].环保科技,2017,23(4):60-64.
    毕学军,张波.倒置A2/O工艺生物脱氮除磷原理及其生产应用[J].环境工程,2006(3):29-30,9

    ,3.
    李亚静,孙力平.常规A2/O工艺和倒置A2/O工艺处理城市污水比较研究[J].环境工程,2015,33(增刊1):967-970.
    郭玉梅,吴毅辉,郭昉,等.某污水厂A2O和倒置A2O工艺脱氮除磷性能分析[J].环境工程学报,2015,9(5):2185-2190.
    环境保护总局,国家质量监督检验检疫总局.城镇污水处理厂污染物排放标准:GB 18918-2002[S].北京:中国环境出版社,2002.
    张硕,邹伟国.多点进水的倒置AAO工艺处理低碳源城市合流污水[J].环境科技,2014,27(1):11-14.
    李茂侨,陈志强,温沁雪.延长缺氧水力停留时间对A-AAO工艺氮磷去除影响的研究[J].环境科学与管理,2018,43(1):102-107.
    杨思敏,齐嵘,杨敏.低温对生物接触氧化反应器硝化性能的影响[J].环境工程学报,2018,12(11):3028-3033.
    郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社, 1998.
    胡朝晖,余健,刘钢,等.反硝化生物滤池除污性能及水头损失变化规律[J].中国给水排水,2014,30(11):14-18.
  • Relative Articles

    [1]ZHAO Jingbo, WANG Rui, HAN Bo, DENG Tian, MA Simeng, HAN Bin. EMISSION CHARACTERISTICS OF GASEOUS POLLUTANTS AND PARTICULATE MATTER FROM A SMALL TURBOFAN ENGINE UNDER MULTIPLE OPERATING CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 145-154. doi: 10.13205/j.hjgc.202412018
    [2]LU Jinsuo, MA Xinting, JIANG Hao, YU Mengzhu, SONG Guang, CHEN Xingdu. REMOVAL PERFORMANCE AND DEGRADATION MECHANISM OF PARTICULATE MATTER AND H2S GAS BY SOLUTION ABSORPTION-ELECTRO-FENTON PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 155-165. doi: 10.13205/j.hjgc.202412019
    [3]WU Jun. ANALYSIS OF SETTLING VELOCITY OF PARTICULATES IN FLOWS IN DRY AND WET WEATHER FROM THE COMBINED SEWER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 1-9. doi: 10.13205/j.hjgc.202304001
    [4]YAO Xinhua, LU Guanghua. EFFECTS OF SLUDGE BLENDING SINTERING ON MINERALIZATION, EMISSION OF FLUE GAS PARTICLES AND DIOXINS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 190-196,157. doi: 10.13205/j.hjgc.202312023
    [5]DENG Jianguo, WANG Dongbin, LIU Tonghao, LI Xue, YANG Shuwen, DUAN Lei, JIANG Jingkun. ORGANIC COMPONENTS IN CONDENSABLE PARTICLE MATTER EMITTED FROM COAL-FIRED POWER PLANTS AND STEEL PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 13-17,31. doi: 10.13205/j.hjgc.202203003
    [6]XIE Shangyu, QIU Chunsheng, ZHAO Xiaojia, WANG Chenchen, WANG Shaopo, SUN Liping, ZHAO Lejun, SONG Xiancai. ANALYSIS OF RAINFALL RUNOFF POLLUTION CHARACTERISTICS OF DIFFERENT ROOF UNDERLYING SURFACES IN RESIDENTIAL AREAS OF TIANJIN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 38-45. doi: 10.13205/j.hjgc.202201007
    [7]YIN Yue, LI Yong-xi, FU Hao, LUAN Yi-gang. AEROSOL DIFFUSION CHARACTERISTICS IN CLOSED AND VENTILATED SPACES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 79-85. doi: 10.13205/j.hjgc.202104013
    [8]WANG Jian-long, QIN Mei-na, HUANG Tao, TU Nan-nan. SEDIMENTATION CHARACTERISTICS OF PARTICULATE MATTERS IN RUNOFF DETENTION TANK VIA CFD METHOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 44-50. doi: 10.13205/j.hjgc.202112007
    [9]ZHANG Rong, ZHANG Fei-long, MA Zi-zhen, ZHOU Chao, LI Zhi-qiang, XU Fu-yuan, JIANG Lin-hua. PILOT SCALE STUDY OF EMISSION REDUCTION OF ZINC ELECTROLYTIC PARTICULATE MATTERS BY ULTRASONIC TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 125-130. doi: 10.13205/j.hjgc.202108017
    [10]WANG Zhi-jian, WANG Xiao-hua, GUO Sheng-gang, LI Jian-wen, WANG Yi-bao, KONG Meng-xi, SHUAI Shi-jin. REVIEW AND OUTLOOK OF AFTERTREATMENT TECHNOLOGIES TO SATISFY ULTRA-LOW EMISSION REGULATIONS FOR HEAVY-DUTY DIESEL ENGINES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 159-167. doi: 10.13205/j.hjgc.202009026
    [11]ZHU Hong-tang, SHEN Xian-kun, LI Run-hao, HU Xiu-de, SUN De-shuai, CHEN Zhao-jun. REMOVAL OF FINE PARTICLES FROM COAL COMBUSTION WITH CHEMICAL AGGLOMERATION AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 97-102,91. doi: 10.13205/j.hjgc.202012017
  • Cited by

    Periodical cited type(22)

    1. 胡继娟,王小治,侯建华. 碳基材料负载纳米零价铁对铬废水的处理研究进展. 现代化工. 2025(02): 63-67 .
    2. 蒋君丽,张蕾. 有机修复剂在化工污染场地土壤修复中的应用研究. 皮革制作与环保科技. 2025(01): 124-126 .
    3. 赵文媛,王春勇,李英,田沙沙. 纳米零价铁对化工污染土壤修复研究现状. 辽宁化工. 2024(01): 103-105 .
    4. 李杉杉,张荣,费杨,梁家辉,杨兵,王萌,师华定,陈世宝. Fe对稻田土壤重金属迁移转化影响机制及研究进展. 地学前缘. 2024(02): 103-110 .
    5. 辛世纪,易校石,王江涛,祁宝川. 红柳生物炭负载纳米零价铁对Cr(Ⅵ)的吸附特性及机理. 伊犁师范大学学报(自然科学版). 2024(01): 45-54 .
    6. 徐玥,徐学敏,时悦,赵晨浩,王圣森. 基于茶渣的生物炭负载零价铁对水体和土壤中Cr(Ⅵ)的修复及机理研究. 环境污染与防治. 2024(05): 638-644 .
    7. 郭伟. 纳米零价铁修复污染土壤技术研究进展. 青海环境. 2024(03): 169-172 .
    8. 钟鑫莲,王梦璐,季宏兵. 铁基生物炭复合材料修复重金属污染的研究进展. 化工新型材料. 2024(10): 61-65 .
    9. 曾涛涛,农海杜,沙海超,陈胜兵,张晓玲,刘金香. 污泥基生物炭负载纳米零价铁去除Cr(Ⅵ)的性能与机制. 复合材料学报. 2023(02): 1037-1049 .
    10. 祁宝川,徐志亮,易校石,徐虎,冯丹. 生物炭负载纳米零价铁的制备及其在环境修复中的研究进展. 化学通报. 2023(07): 815-823 .
    11. 王阳,高衍浩,孔凡今. 生物炭负载纳米零价铁修复重金属污染土壤的研究进展. 山东化工. 2023(10): 98-101 .
    12. 徐曼云,韩超,江鉴廷,时红,丁园. 炭基质钝化剂对土壤Cd、Cu的阻控效果与老化机制. 南昌航空大学学报(自然科学版). 2023(03): 88-94 .
    13. 熊子璇,杨卫春,贺宇宏,李琦,廖骐,杨志辉,司梦莹. 氧化条件下铁基材料还原Cr(Ⅵ)产物稳定性研究. 有色冶金设计与研究. 2023(06): 38-45 .
    14. 李靖,钟为章,宁志芳,牛建瑞,韩永辉,马彩云. 改性生物炭强化土霉素菌渣厌氧消化研究. 环境科学与技术. 2023(12): 109-116 .
    15. 姜维,杨芳俐,吴永红,陈冠忠,陈红凤,唐次来. Fe~0/Fe_3O_4复合材料同时去除水中多种重金属的效果. 环境工程学报. 2022(04): 1186-1198 .
    16. 李也. 铁基稳定化材料在重金属污染土壤修复中的应用. 广东化工. 2022(10): 119-121+155 .
    17. 徐皓普,汤波. 改性生物炭在土壤重金属修复中的机理及应用. 化工技术与开发. 2022(09): 49-53 .
    18. 刘诗婷,刘静,刘爱荣,张伟贤. 纳米零价铁基材料用于地下水修复研究进展. 环境科学与技术. 2022(09): 181-193 .
    19. 陈龙,李启婷,钱坤鹏. 重金属铬污染土壤的修复技术研究进展. 应用化工. 2022(10): 3058-3062 .
    20. 刘菁,田一梅,刘云慧,褚献献,刘然,单金林. pH值、硫酸根和温度对钢管管垢中铬释放的影响. 中国环境科学. 2022(12): 5679-5686 .
    21. 祝世文,程涛,屈刘盼盼,倪兵. 铜污染土壤修复技术及其应用研究进展. 湖北理工学院学报. 2021(01): 22-26 .
    22. 梁佳怡,王泳森,段敏,李艺,陈喆,于方明,刘可慧. 生物质炭对土壤有效态镉及植物镉吸收影响的整合分析. 广西师范大学学报(自然科学版). 2021(06): 1-12 .

    Other cited types(17)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.9 %FULLTEXT: 11.9 %META: 87.0 %META: 87.0 %PDF: 1.1 %PDF: 1.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.2 %其他: 15.2 %China: 1.1 %China: 1.1 %[]: 1.7 %[]: 1.7 %上海: 4.5 %上海: 4.5 %东莞: 0.6 %东莞: 0.6 %临汾: 1.1 %临汾: 1.1 %北京: 5.6 %北京: 5.6 %十堰: 0.6 %十堰: 0.6 %台州: 0.6 %台州: 0.6 %大同: 0.6 %大同: 0.6 %天津: 1.1 %天津: 1.1 %常德: 0.6 %常德: 0.6 %张家口: 1.1 %张家口: 1.1 %徐州: 0.6 %徐州: 0.6 %成都: 1.1 %成都: 1.1 %扬州: 0.6 %扬州: 0.6 %拉贾斯坦邦: 0.6 %拉贾斯坦邦: 0.6 %晋城: 1.1 %晋城: 1.1 %朝阳: 0.6 %朝阳: 0.6 %杭州: 3.4 %杭州: 3.4 %济源: 0.6 %济源: 0.6 %温州: 0.6 %温州: 0.6 %湖州: 1.7 %湖州: 1.7 %漯河: 1.1 %漯河: 1.1 %石家庄: 1.1 %石家庄: 1.1 %芒廷维尤: 29.2 %芒廷维尤: 29.2 %苏州: 0.6 %苏州: 0.6 %西宁: 14.0 %西宁: 14.0 %许昌: 1.7 %许昌: 1.7 %贵阳: 0.6 %贵阳: 0.6 %运城: 2.8 %运城: 2.8 %遵义: 0.6 %遵义: 0.6 %邢台: 1.1 %邢台: 1.1 %邯郸: 0.6 %邯郸: 0.6 %重庆: 0.6 %重庆: 0.6 %长沙: 0.6 %长沙: 0.6 %长治: 0.6 %长治: 0.6 %其他China[]上海东莞临汾北京十堰台州大同天津常德张家口徐州成都扬州拉贾斯坦邦晋城朝阳杭州济源温州湖州漯河石家庄芒廷维尤苏州西宁许昌贵阳运城遵义邢台邯郸重庆长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (584) PDF downloads(19) Cited by(39)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return