Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XUE Tong-lai, ZHAO Dong-hui, HAN Fei. SVR WATER QUALITY PREDICTION MODEL BASED ON GA OPTIMIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 123-127. doi: 10.13205/j.hjgc.202003021
Citation: XUE Tong-lai, ZHAO Dong-hui, HAN Fei. SVR WATER QUALITY PREDICTION MODEL BASED ON GA OPTIMIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 123-127. doi: 10.13205/j.hjgc.202003021

SVR WATER QUALITY PREDICTION MODEL BASED ON GA OPTIMIZATION

doi: 10.13205/j.hjgc.202003021
  • Received Date: 2019-07-30
  • Aiming at the fact that the BOD5 in wastewater can not easily measured directly, a support vector machine regression water quality prediction model based on genetic algorithm optimization parameters was proposed. Using machine learning method, BOD5 was determined by establishing a mathematical relationship model between COD and other parameters in wastewater. The genetic algorithm was used to optimize the key parameters in the SVR, which solved the problem of parameter selection of the traditional SVR prediction model. Experiments were carried out with the influent wastewater from the Beijing Wastewater Treatment Plant as the research object. The results showed that the average error and root mean square error of the results predicted by GA-SVR method were reduced to 0.009443 and 16.88 mg/L, respectively. Compared with BP neural network and the SVR,the result of GA-SVR was with reasonable advantage.
  • LEWIS W M, WURTSBAUGH W A, PAERL H W. Rationale for Control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters[J]. Environmental Science & Technology, 2011, 45(24):10300-10305.
    郑利杰, 高红杰, 宋永会, 等. 我国典型城市地表水水质综合评价与分析[J]. 环境工程技术学报, 2016(3):252-258.
    刘长宇, 董绍俊. 水质生化需氧量快速检测新方法研究进展:现场、实时和就地监测[J]. 中国科学:化学, 2018, 48(8):194-201.
    乔俊飞, 李瑞祥,柴伟,等.基于PSO-ESN神经网络的污水BOD预测[J]. 控制工程, 2016, 23(4):463-467.
    Predictive modeling for wastewater applications:linear and nonlinear approaches[J].Environmental Modeling&Software,2009,24(1):96-106.
    MIRBAGHERI S A, BAGHERI M, BOUDAGHPOUR S, et al. Performance evaluation and modeling of a submerged membrane bioreactor treating combined municipal and industrial wastewater using radial basis function artificial neural networks[J]. Journal of Environmental Health Science & Engineering, 2015, 13(1):1-15.
    王树东, 葛珉昊, 陈明明. 基于混合递阶遗传算法优化RBF神经网络的BOD5软测量方法[J]. 给水排水, 2014, 40(3):149-153.
    唐晓彬, 张瑞, 刘立新. 基于蝙蝠算法SVR模型的北京市二手房价预测研究[J]. 统计研究, 2018, 35(11):73-83.
    墨蒙, 赵龙章, 龚嫒雯, 等. 基于遗传算法优化的BP神经网络研究应用[J].现代电子技术,2018,512(9):49-52.
    VAPNIK V.The Nature of Statistical Learning Theory[M]. Heidelberg:Springer, 1995.
    周丽芳,文佳黎.基于遗传算法的虚拟足球游戏设计[J].计算机应用与软件,2017,34(2):209-213.
    段青玲,张磊,魏芳芳,等. 基于时间序列GA-SVR的水产品价格预测模型及验证[J].农业工程学报, 2017(1):308-314.
    任金霞,刘敏. 基于改进GA的云计算任务调度策略[J]. 沈阳工业大学学报, 2019, 41(3):320-325.
    郭泓利,李鑫玮,任钦毅,等. 全国典型城市污水处理厂进水水质特征分析[J].给水排水,2018,54(6):12-15.
    李捷, 王宏利, 隋军. 昆明某城市污水处理厂进水特征分析[J]. 给水排水, 2015(增刊1):66-69.
    陈丽琼, 茹婉红, 胡勇, 等. 生化需氧量测定方法的研究进展及现状[J]. 绿色科技, 2013(2):138-141.
    江梅, 范云慧, 瑞凤霞. 五日生化需氧量(BOD5)测定时防止氨氮干扰的方法探讨[J]. 净水技术, 2010, 29(6):62-65.
  • Relative Articles

    [1]WANG Yihang, FENG Xiaonan, WANG Zongping, YUAN Jianwei, ZHU Zhihuai, LIANG Mu, MA Jie, GUO Gang, WAN Peng, CHEN Zhenbin, ZUO Liang. SCHEDULING OPTIMIZATION OF DOMESTIC WASTE TRANSFER SYSTEMS BASED ON DIGITAL TWINNING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 199-205. doi: 10.13205/j.hjgc.202405025
    [2]WU Kunlun, GONG Zhiqi, WU Jia. DYNAMIC OPTIMIZATION OF LAYOUT OF CONSTRUCTION WASTE RECYCLING FACILITIES: A CASE STUDY OF XINING, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 194-201,258. doi: 10.13205/j.hjgc.202306026
    [3]YU Feng, WANG Kejia, ZHANG Wenlong, LI Yi. PREDICTION OF COAGULANT DOSAGE FOR IN-SITU TURBIDITY CONTROL IN WATER ECOLOGICAL RESTORATION BASED ON BP NEURAL NETWORK OPTIMIZED BY GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 154-163. doi: 10.13205/j.hjgc.202304022
    [4]WANG Jianlong, ZHANG Changhe, XI Guangpeng. A NOVEL VOLUME OPTIMIZATION METHOD FOR DETENTION TANKS FOR FLOODING IMMIGRATION BASED ON MULTI-OBJECTIVE GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 166-173. doi: 10.13205/j.hjgc.202306022
    [5]PANG Min, WANG Jingxian, XU Ruichen. OPTIMIZATION OF WATER DIVERSION SCHEME OF CHAO LAKE BY IMPROVED WATER QUALITY OVER-STANDARD RATE ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 74-80. doi: 10.13205/j.hjgc.202203012
    [6]LI Hongzhe, WANG Shijie, LI Chengming. ANALYSIS OF THE DIFFERENCE BETWEEN GF-6 AND LANDSAT-8 IN WATER QUALITY MONITORING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 196-201. doi: 10.13205/j.hjgc.202204028
    [7]ZHENG Qiongqi, LIN Yiyuan, YIN Hailong, XU Zuxin, SU Lei, WU Shanshan. SOURCE TRACKING OF WASTEWATER DISCHARGE INTO RIVERS USING HYDRODYNAMIC DIFFUSION WAVE MODEL AND GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 63-69. doi: 10.13205/j.hjgc.202206008
    [8]ZHANG Qiang, WANG Mei-rong, ZHANG Shu-han, GONG Ying-an, WANG Li-jing, CAO Xiu-qin. DEVELOPMENT OF AN AUTOMATIC SAMPLING TECHNOLOGY FOR URBAN RAINFALL RUNOFF QUALITY MONITORING AND ITS APPLICATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 141-144,150. doi: 10.13205/j.hjgc.202004025
    [13]Ren Jinxia Yu Zhiwu You Xin, . MODEL FOR WATER QUALITY EVALUATION BASED ON WAVELET NEURAL NETWORK OF ADAPTIVE GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 144-148. doi: 10.13205/j.hjgc.201505031
  • Cited by

    Periodical cited type(25)

    1. 陈肖,陈峰. 基于HLCMEA-SWRELM的水体pH值预测. 计算机应用与软件. 2024(02): 123-129 .
    2. 王彩玲,张国浩. 结合光谱降维的IPSO-SVR水体总磷浓度预测模型. 水土保持通报. 2024(02): 196-204 .
    3. 杜先君,柴俊伟. 基于优化特征选择的污水处理过程BOD神经网络软测量模型. 兰州理工大学学报. 2024(06): 85-91 .
    4. 倪浩然,张坤,陈曦,白晓波,郑守磊. 基于遗传-支持向量回归算法的计量标准稳定性预测研究. 计量与测试技术. 2024(12): 102-105+108 .
    5. 胡龙元,刘黎志. 基于改进鲸鱼算法优化GRU-CNN的溶解氧预测. 环境工程学报. 2024(10): 2957-2964 .
    6. 杨坪宏,胡奥,崔东文,杨杰. 基于数据处理与若干群体算法优化的 GRU/LSTM水质时间序列预测. 水资源与水工程学报. 2023(04): 45-53 .
    7. 罗学刚,吕俊瑞. 基于张量特征-GRU和多头自注意力机制的水质预测模型方法. 攀枝花学院学报. 2023(05): 89-96 .
    8. 吴瑞姣. 基于BP-SVR混合模型的古田水库总磷浓度遥感反演. 福建地质. 2023(03): 224-230 .
    9. 许浩然,陈中举,杨兆前,房梦婷,詹炜. 基于Prophet模型的湖北省月降水量预测. 节水灌溉. 2022(02): 7-12+20 .
    10. 董陈超,田明昊,赵伟朝. 基于GA优化的RF-Softmax水质预测模型研究. 湖北农业科学. 2022(07): 60-65+82 .
    11. 王昱文,杜震洪,戴震,刘仁义,张丰. 基于复合神经网络的多元水质指标预测模型. 浙江大学学报(理学版). 2022(03): 354-362+375 .
    12. 石翠翠,刘媛华,陈昕. 基于粒子群算法优化支持向量回归的水质预测模型. 信息与控制. 2022(03): 307-317 .
    13. 李俊禹,刘书明,吴雪,谢涛,金晔. 基于动态剪枝的城市供水管网优化调度算法. 环境工程. 2022(06): 226-232+153 . 本站查看
    14. 白雯睿,杨毅强,朱雪芹. 基于VMDLSTNet的水质预测模型. 科学技术与工程. 2022(22): 9881-9889 .
    15. 史利涛. 基于数据挖掘的城市人居环境河流水质变化监测模型设计. 四川环境. 2022(04): 219-224 .
    16. 白雯睿,杨毅强,郭辉,朱雪芹. 基于VMD-CNN-LSTM的珠江流域水质多步预测模型研究. 四川轻化工大学学报(自然科学版). 2022(04): 66-74 .
    17. 白雯睿,杨毅强,李强. 引入小波分解的Seq2Seq水质多步预测模型研究. 现代电子技术. 2022(17): 100-105 .
    18. 盛家豪,钱进,王一桂,黄凤启. 基于GA-SVR的循环流化床锅炉床温预测. 智能计算机与应用. 2022(09): 105-109 .
    19. 凌从高,穆溪,许敏,王思晨,赵秋雨,江鹏. 湿地生态系统实际蒸散发数据驱动估算模型研究. 安徽农业大学学报. 2022(05): 771-779 .
    20. 曹斐,周彧,王春晓,任梦宇,周峰. 一种改进的支持向量回归的混凝土强度预测方法. 硅酸盐通报. 2021(01): 90-97 .
    21. 孟滔. 改进粒子群算法优化SVR水质预测模型研究. 农业与技术. 2021(03): 33-36 .
    22. 孟滔. 支持向量回归水质预测模型的研究进展. 绿色科技. 2021(08): 77-79 .
    23. 王旭生,王昕,孙晓川. 改进RVM预测海水水质. 计算机工程与设计. 2021(12): 3562-3568 .
    24. 梁小林,秦欢,陈敏茹,许奇,梁曌. 基于Adaboost-SVR模型的我国碳排放强度分析与预测. 经济数学. 2020(03): 167-174 .
    25. 何山,尹心安. 不同入流类型对生态流量管理效果的影响. 环境工程. 2020(10): 76-82 . 本站查看

    Other cited types(23)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (305) PDF downloads(9) Cited by(48)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return