Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XUE Tong-lai, ZHAO Dong-hui, HAN Fei. SVR WATER QUALITY PREDICTION MODEL BASED ON GA OPTIMIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 123-127. doi: 10.13205/j.hjgc.202003021
Citation: CHEN Yong-jun, SUN Ru-hua, WANG Xiang, XU Feng. NUMERICAL SIMULATION OF POLLUTED SITES BASED ON COMSOL THERMAL ENHANCEMED SVE TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 174-179. doi: 10.13205/j.hjgc.202003029

NUMERICAL SIMULATION OF POLLUTED SITES BASED ON COMSOL THERMAL ENHANCEMED SVE TECHNOLOGY

doi: 10.13205/j.hjgc.202003029
  • Received Date: 2019-07-19
  • In this paper, COMSOL simulation software was used to simulate the thermal response unit of SVE technology with a scale of 2 m×2 m×1 m, for the temperature field variation of 1 m depth below the surface and the migration state of pollutants in the plane with a depth of 0.5 m below the surface. The temperature field simulation of the scale model showed that when the heat source power was 80 kW/m3 with a duration of 70 h, the highest and lowest temperature of the site reached the stable values of 2500 K and 500 K, respectively. And then velocity field was applied at this temperature, when the negative pressure of pumping hole reached 101.325 kPa, and the peak migration velocity reached 0.3 m/s at 6 min. Migration velocity showed a most obvious decline in 6~10 min and got basically stable after 10 min. Therefore, most of the symbolizing pollutants had been removed in 10 min, followed by the trailing effect that was commonly seen in actual projects.
  • 石油和石油化工产品污染[J].能源与节能,2016(3):132.
    TODD H, VALINA S,TOM S,et al. Mechanism for detecting NAPL using electrical resistivity imaging[J]. Journal of Contaminant Hydrology, 2017,205:57-69.
    GABRIELE DE S,CARLO L,FRANCESCA P, et al. Soil radon survey to assess NAPL contamination from an ancient spill. Do kerosene vapors affect radon partition?[J]. Journal of Environmental Radioactivity, 2017, 171:138-147.
    MOTASEM Y D A, SU K N, MUSTAFA M B, et al. Influence of macro-pores on DNAPL migration in double-porosity soil using light transmission visualization method[J].Transport Porous Media, 2017, 117:103-123.
    TANNAZ P, NATHALY L A, RAAID A. Application of nanotechnology in removal of NAPLs from contaminated aquifers:a source clean-up experimental study[J]. Clean Technologies and Environmental Policy, 2018, 20:427-433.
    US Army Crops of Engineers. Soil Vapor Extraction and Bioventin[R]. Washington DC Department of the Army US Army Corps of Engineers, 2002:9-10.
    KINGSTON J L T, DAHLEN P R,JOHNSON P C. State-of-the-practice review of in situ thermal technologies[J]. Ground Water Monitoring and Remediation,2010, 30(4):64-72.
    刘少卿,姜林,黄喆,等. 挥发及半挥发有机物污染场地蒸汽抽提修复技术原理与影响因素[J]. 环境科学,2011,32(3):825-833.
    POPPENDIECK D G, LOEHR R C, WEBSTER M T. Predicting hydrocarbon removal from thermally enhanced soil vapor extraction systems:1.aboratory studies[J]. Journal of Hazardous Materials, 1999,69(1):81-93.
    BATTISTELLI A.Modeling biodegradation of organic contaminant under multiphase conditions with TMVOCBio[J].Vadose Zone Journal, 2004, 3(3):875-883.
    于颖, 邵子婴, 刘靓,等.热强化气相抽提法修复半挥发性石油烃污染土壤的影响因素[J].环境工程学报, 2017,11(4):2522-2527.
    王茂林,岳军,冯宝成,等.基于COMSOL的图像处理[J].数字技术与应用,2011(10):158-159, 161.
    中仿科技. 专业数值分析系统COMSOL Multiphysics[J].智能制造,2008(9):40-44.
  • Relative Articles

    [1]DUAN Huabo, ZHOU Jijiao, ZHAO Nana, LAN Xiaofeng, ZHENG Ruiying, FU Xingrui, CHEN Ying, SUN Jianming. A DIGITAL MANAGEMENT PLATFORM FOR SUPPORTING MUNICIPAL SOLID WASTE CLASSIFICATION: AN APPLICATION CASE OF HUZHOU, ZHEJIANG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 230-238. doi: 10.13205/j.hjgc.202402027
    [2]ZHU Yixin, YE Zhen, REN Lingwei, ZHONG Yuchi, ZHOU Wenjun. EXPERIMENTAL STUDY ON MUNICIPAL SOLID WASTE INCINERATION FLY ASH IN CONJUNCTION WITH CONSTRUCTION WASTE TO BURN CERAMICS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 206-212,130. doi: 10.13205/j.hjgc.202312025
    [3]JIA Jinming, REN Fumin, HU Shuxin, GUO Changhong, LIU Junshi, MA Li, LU Tong, CUI Can, LIU Guotao, ZHANG Boyu. REGIONAL ENVIRONMENTAL POLLUTION RISK ANALYSIS OF CONSTRUCTION WASTE IN MAJOR URBAN CLUSTERS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 98-105. doi: 10.13205/j.hjgc.202302014
    [4]ZHAO Tianrui, LIU Yiming, LÜ Pengzhao, LI Yanliang, TANG Xiaomi, GUO Wei, ZHANG Jun, TIAN Yu. CONSTRUCTION OF LightGBM WASTE PRODUCTION PREDICT MODEL IN A SCENARIO OF ZERO-WASTE CITY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 210-215. doi: 10.13205/j.hjgc.202303028
    [5]XU Chong-ping, YUE Qiang, ZHANG Yu-jie, WANG Huan-yu. EVALUATION OF OPTIMIZATION POTENTIAL OF URBAN METABOLIC SYSTEM DRIVEN BY “ZERO-WASTE CITY”: A CASE STUDY IN PANJIN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 224-232. doi: 10.13205/j.hjgc.202209030
    [6]YANG Guodong, LAN Tian, SONG Mengzhu, DU Yufeng, LIU Mengdan, SONG Yingchun, JIANG Jianguo. ENGINEERING APPLICATION OF A DRY-WET PRESS SEPARATION-HYDROTHERMAL CARBONIZATION TECHNOLOGY FOR FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 53-60. doi: 10.13205/j.hjgc.202212008
    [7]YANG Tao, LIU Peng-yu, XU Ya-qiang, CHEN Dai-jie, JING Mei-ying, CHU Xiao-he. PILOT STUDY ON TREATMENT OF ACARBOSE RESIDUE BY A MULTI-STAGE ANAEROBIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 123-127. doi: 10.13205/j.hjgc.202104019
    [8]YU Jin-tao, MA Xiao-yu, ZHANG Chang-bo. AN EFFICIENT SCREENING SYSTEM OF CLAY SOIL PARTICLES IN THE SOIL WASHING REMEDIATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 160-166. doi: 10.13205/j.hjgc.202106024
    [9]ZHAO Xi, WU Shan-shan, LU Ke-ding. DEVELOPMENT OF AN EVALUATION SYSTEM FOR ASSESSING CONSTRUCTION LEVEL IN OPERATION OF MUNICIPAL SOLID WASTE COMPREHENSIVE TREATMENT PARK FOR ZERO-WASTE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 136-140,15. doi: 10.13205/j.hjgc.202102022
    [10]YANG Shu-jun, ZHANG Chen, HE Jun, XIONG Jian-ying, LI Xue-ting, HUANG Xiao-wen. ENGINEERING APPLICATION OF NANOFILTRATION & THREE-LEVELS REDUCTION OF NANOFILTRATION CONCENTRATE TECHNOLOGY FOR ADVANCED TREATMENT OF LANDFILL LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 81-87,114. doi: 10.13205/j.hjgc.202006013
    [11]WANG Ruo-fei, ZHANG Guang-zhi, WANG Ning, REN Fu-min, CHEN Rui, XI Cheng-gang. ANALYSIS ON DOMESTIC AND FOREIGN CONSTRUCTION AND DEMOLITION WASTE RELATED STANDARDS AND PATENTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 27-32. doi: 10.13205/j.hjgc.202003005
    [12]QI Guo-ping, LI Wei-wei, NIU Yong-jian, NING Gao-yang, SUN Hong-wei. EXPERIMENTAL STUDY ON REDUCTION OF OXYTETRACYCLINE RESIDUE BY ALKALINITY OF NaOH’s DOSAGES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 140-144,151. doi: 10.13205/j.hjgc.202011023
    [13]ZENG Guang, LI Fang-fang, TANG Tang, LU Guan-you, LEI Guo-yuan. CONSTRUCTION WASTE REDUCTION TECHNOLOGY BASED ON CLEAN PRODUCTION CONCEPT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 138-143. doi: 10.13205/j.hjgc.202005024
  • Cited by

    Periodical cited type(25)

    1. 陈肖,陈峰. 基于HLCMEA-SWRELM的水体pH值预测. 计算机应用与软件. 2024(02): 123-129 .
    2. 王彩玲,张国浩. 结合光谱降维的IPSO-SVR水体总磷浓度预测模型. 水土保持通报. 2024(02): 196-204 .
    3. 杜先君,柴俊伟. 基于优化特征选择的污水处理过程BOD神经网络软测量模型. 兰州理工大学学报. 2024(06): 85-91 .
    4. 倪浩然,张坤,陈曦,白晓波,郑守磊. 基于遗传-支持向量回归算法的计量标准稳定性预测研究. 计量与测试技术. 2024(12): 102-105+108 .
    5. 胡龙元,刘黎志. 基于改进鲸鱼算法优化GRU-CNN的溶解氧预测. 环境工程学报. 2024(10): 2957-2964 .
    6. 杨坪宏,胡奥,崔东文,杨杰. 基于数据处理与若干群体算法优化的 GRU/LSTM水质时间序列预测. 水资源与水工程学报. 2023(04): 45-53 .
    7. 罗学刚,吕俊瑞. 基于张量特征-GRU和多头自注意力机制的水质预测模型方法. 攀枝花学院学报. 2023(05): 89-96 .
    8. 吴瑞姣. 基于BP-SVR混合模型的古田水库总磷浓度遥感反演. 福建地质. 2023(03): 224-230 .
    9. 许浩然,陈中举,杨兆前,房梦婷,詹炜. 基于Prophet模型的湖北省月降水量预测. 节水灌溉. 2022(02): 7-12+20 .
    10. 董陈超,田明昊,赵伟朝. 基于GA优化的RF-Softmax水质预测模型研究. 湖北农业科学. 2022(07): 60-65+82 .
    11. 王昱文,杜震洪,戴震,刘仁义,张丰. 基于复合神经网络的多元水质指标预测模型. 浙江大学学报(理学版). 2022(03): 354-362+375 .
    12. 石翠翠,刘媛华,陈昕. 基于粒子群算法优化支持向量回归的水质预测模型. 信息与控制. 2022(03): 307-317 .
    13. 李俊禹,刘书明,吴雪,谢涛,金晔. 基于动态剪枝的城市供水管网优化调度算法. 环境工程. 2022(06): 226-232+153 . 本站查看
    14. 白雯睿,杨毅强,朱雪芹. 基于VMDLSTNet的水质预测模型. 科学技术与工程. 2022(22): 9881-9889 .
    15. 史利涛. 基于数据挖掘的城市人居环境河流水质变化监测模型设计. 四川环境. 2022(04): 219-224 .
    16. 白雯睿,杨毅强,郭辉,朱雪芹. 基于VMD-CNN-LSTM的珠江流域水质多步预测模型研究. 四川轻化工大学学报(自然科学版). 2022(04): 66-74 .
    17. 白雯睿,杨毅强,李强. 引入小波分解的Seq2Seq水质多步预测模型研究. 现代电子技术. 2022(17): 100-105 .
    18. 盛家豪,钱进,王一桂,黄凤启. 基于GA-SVR的循环流化床锅炉床温预测. 智能计算机与应用. 2022(09): 105-109 .
    19. 凌从高,穆溪,许敏,王思晨,赵秋雨,江鹏. 湿地生态系统实际蒸散发数据驱动估算模型研究. 安徽农业大学学报. 2022(05): 771-779 .
    20. 曹斐,周彧,王春晓,任梦宇,周峰. 一种改进的支持向量回归的混凝土强度预测方法. 硅酸盐通报. 2021(01): 90-97 .
    21. 孟滔. 改进粒子群算法优化SVR水质预测模型研究. 农业与技术. 2021(03): 33-36 .
    22. 孟滔. 支持向量回归水质预测模型的研究进展. 绿色科技. 2021(08): 77-79 .
    23. 王旭生,王昕,孙晓川. 改进RVM预测海水水质. 计算机工程与设计. 2021(12): 3562-3568 .
    24. 梁小林,秦欢,陈敏茹,许奇,梁曌. 基于Adaboost-SVR模型的我国碳排放强度分析与预测. 经济数学. 2020(03): 167-174 .
    25. 何山,尹心安. 不同入流类型对生态流量管理效果的影响. 环境工程. 2020(10): 76-82 . 本站查看

    Other cited types(23)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.3 %FULLTEXT: 13.3 %META: 82.3 %META: 82.3 %PDF: 4.4 %PDF: 4.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.2 %其他: 16.2 %其他: 0.6 %其他: 0.6 %Canton: 0.3 %Canton: 0.3 %China: 0.3 %China: 0.3 %Dallas: 0.3 %Dallas: 0.3 %Macau: 0.6 %Macau: 0.6 %上海: 2.9 %上海: 2.9 %东莞: 4.1 %东莞: 4.1 %临汾: 0.6 %临汾: 0.6 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %保定: 0.3 %保定: 0.3 %北京: 5.0 %北京: 5.0 %南京: 0.3 %南京: 0.3 %南京市建邺区: 0.3 %南京市建邺区: 0.3 %南通: 0.9 %南通: 0.9 %台北: 0.6 %台北: 0.6 %台州: 0.9 %台州: 0.9 %哈密尔顿: 0.3 %哈密尔顿: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %喀什: 0.3 %喀什: 0.3 %嘉兴: 0.9 %嘉兴: 0.9 %大同: 0.3 %大同: 0.3 %大连: 1.2 %大连: 1.2 %天津: 0.9 %天津: 0.9 %太原: 0.3 %太原: 0.3 %宁波: 0.3 %宁波: 0.3 %安康: 0.3 %安康: 0.3 %宿迁: 0.3 %宿迁: 0.3 %密蘇里城: 0.3 %密蘇里城: 0.3 %布兰普顿: 0.3 %布兰普顿: 0.3 %常德: 0.3 %常德: 0.3 %广州: 0.3 %广州: 0.3 %张家口: 0.9 %张家口: 0.9 %成都: 0.6 %成都: 0.6 %拉贾斯坦邦: 0.3 %拉贾斯坦邦: 0.3 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.9 %杭州: 0.9 %柳州: 0.3 %柳州: 0.3 %桂林: 0.3 %桂林: 0.3 %武汉: 0.6 %武汉: 0.6 %永州: 1.5 %永州: 1.5 %江门: 0.3 %江门: 0.3 %洛阳: 0.3 %洛阳: 0.3 %济源: 0.6 %济源: 0.6 %深圳: 0.9 %深圳: 0.9 %温州: 0.6 %温州: 0.6 %湖州: 0.6 %湖州: 0.6 %湘潭: 0.6 %湘潭: 0.6 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.3 %石家庄: 0.3 %秦皇岛: 0.6 %秦皇岛: 0.6 %绵阳: 0.3 %绵阳: 0.3 %肇庆: 0.6 %肇庆: 0.6 %芒廷维尤: 25.7 %芒廷维尤: 25.7 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.9 %苏州: 0.9 %荆州: 0.9 %荆州: 0.9 %菏泽: 0.3 %菏泽: 0.3 %衢州: 1.2 %衢州: 1.2 %西宁: 7.7 %西宁: 7.7 %西安: 1.2 %西安: 1.2 %贵阳: 0.3 %贵阳: 0.3 %运城: 2.7 %运城: 2.7 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.6 %邯郸: 0.6 %郑州: 1.8 %郑州: 1.8 %重庆: 0.3 %重庆: 0.3 %长沙: 0.3 %长沙: 0.3 %长治: 0.3 %长治: 0.3 %门尼菲: 0.6 %门尼菲: 0.6 %青岛: 0.9 %青岛: 0.9 %其他其他CantonChinaDallasMacau上海东莞临汾乌鲁木齐保定北京南京南京市建邺区南通台北台州哈密尔顿哈尔滨喀什嘉兴大同大连天津太原宁波安康宿迁密蘇里城布兰普顿常德广州张家口成都拉贾斯坦邦晋城朝阳杭州柳州桂林武汉永州江门洛阳济源深圳温州湖州湘潭漯河石家庄秦皇岛绵阳肇庆芒廷维尤芝加哥苏州荆州菏泽衢州西宁西安贵阳运城遵义邯郸郑州重庆长沙长治门尼菲青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (219) PDF downloads(5) Cited by(48)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return