Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHOU Yu-qi, CAO Qi, XU Jun-chao, LIU Chang-qing, ZHUO Gui-hua, CHEN Jian-yong, ZHENG Yu-yi. INFLUENCE OF DIFFERENT SOURCE SUBSTRATE SYSTEMS ON METHANOGENESIS OF RESIDUE FROM ANAEROBIC FERMENTATIVE HYDROGEN PRODUCTION USING COMBINED SLUDGE AND FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 123-130. doi: 10.13205/j.hjgc.202109018
Citation: SONG Jian-ying, WANG Jian-long, LI Yi-ming, GONG Yong-wei, DU Xiao-li. COMPARISON OF ARTIFICIAL WATER DIVERSION AND SPONGE CITY FOR GROUNDWATER RECHARGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 59-65. doi: 10.13205/j.hjgc.202004011

COMPARISON OF ARTIFICIAL WATER DIVERSION AND SPONGE CITY FOR GROUNDWATER RECHARGE

doi: 10.13205/j.hjgc.202004011
  • Received Date: 2020-02-17
  • With the rapid development of urbanization and the rapid increase of urban population, urban water demand has increased markedly, resulting in excessive exploitation of groundwater in many cities. At the same time, with the increase of urban construction area, the proportion of impervious area has increased year by year, blocking the paths of rainwater seepage, resulting in the reduction of groundwater recharge volume. Excessive exploitation of groundwater resources has caused a series of problems such as uneven ground settlement, groundwater pollution, and seawater intrusion. In view of the above problems, taking a city in China as an example, the comprehensive benefits of artificial water diversion and sponge city to promote recharge of groundwater were compared in terms of water quantity, water quality and engineering reliability. The results showed that the groundwater recharge of the artificial water diversion was about 7.79×106 m3/a, and the groundwater recharge of the sponge city construction was 3.39×106 m3/a. The pollutants of the two methods were similar, but there existed large great fluctuation of the concentration of rainwater runoff pollutants. Therefore, artificial water diversion had the advantages of easy control of water quantity and relatively stable water quality, but the water volume was limited by the available water sources. While ensuring the effect of groundwater recharge, sponge city construction also had multiple benefits such as rainwater runoff pollution control and flood mitigation. The comprehensive benefits were relatively high, and it's more in line with the concept of sustainable urban development.
  • 汪丙国. 地下水补给评价方法研究:以华北平原为例[D].武汉:中国地质大学(武汉),2008.
    许昆.降水量与地下水补给量的关系分析[J].地下水,2004,26(4):272-274.
    MINNIG M, MOECK C, RADNY D, et al. Impact of urbanization on groundwater recharge rates in Dübendorf, Switzerland[J]. Journal of Hydrology, 2018,563:1135-1146.
    薛丽,刘春梅.地下水补给量计算方法介绍[J].黑龙江水利科技,2015,43(6):125-126.
    郝艳飞.我国水资源短缺现状及节水措施[J].水利科技与经济,2011,17(10):65-67.
    楚学涛,李海峰.浅谈过度开采地下水的危害与防治[J].西部资源,2014(3):110-112.
    丁洪章.关于地下水人工补给方法的浅议[J].地下水,1988(1):26-28.
    陈国坛,尹玉华.谈地下水补给方法[J].科技创新与应用,2012(9):107.
    张文洲,贺屹,刘燕.深层地下水人工补给研究分析[J].地下水,2005,27(2):102-104.
    李伟,李砚阁,龙玉桥.地下水人工补给井研究综述[J].河海大学学报(自然科学版),2013,41(5):410-416.
    李旺林. 松散介质地下水库设计理论研究[D]. 南京:河海大学, 2006.
    许可. 再生水入渗对地下水水质影响分析[J]. 人民黄河, 2012, 34(4):55-57.
    辛莉. 潮白河顺义段再生水利用工程对地下水影响风险管理[D].北京:清华大学,2015.
    王志华. 黄河下游渗漏补给地下水水量研究[D].南京:河海大学,2007.
    罗飞. 再生水井灌及河道入渗补给地下水场地适宜性评价研究[D].北京:中国地质大学(北京),2014.
    钱龙霞. 北京市水资源短缺风险评价.[D].北京:北京师范大学,2013.
    许士晨.海绵城市防洪格局的顶层设计:论北京西郊砂石坑蓄洪工程的作用[J].水利规划与设计,2016(10):4-5,25.
    李伟. 北塘水库对地下水的渗漏补给特性研究[D].南京:河海大学,2007.
    杜新强,贾思达,方敏,等.海绵城市建设对区域地下水资源的补给效应[J].水资源保护,2019,35(2):13-17

    ,24.
    仇保兴.海绵城市(LID)的内涵、途径与展望[J].建设科技,2015(1):11-18.
    宋子龙.城市硬化背景下潜水含水层的海绵效应和净化作用[J].湖北理工学院学报, 2016, 32(2):9-12

    ,36.
    王兴超.地下水库在海绵城市建设中的应用[J].水利水电科技进展, 2018, 38(1):83-87.
    济南市水文局. 济南市城市水文年鉴2012[Z]. 济南:山东水务印务有限公司,2013.
    宋剑英,王建龙,赵梦圆,等.海绵城市建设促渗保泉方案及其效果评估:以济南市海绵城市建设试点区为例[J].水利水电技术,2019,50(5):20-26.
  • Relative Articles

    [1]CAO Bofeng, LIU Zixin, WEI Cuiyu, TANG Yufei, SHI Yucui, JIANG Pingping. EFFECT OF Cr(Ⅵ) STRESS ON ROOT EXUDATES AND MICROBIAL COMPOSITION OF LEERSIA HEXANDRA SWARTZ[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 175-181. doi: 10.13205/j.hjgc.202402021
    [2]HAN Jianjun, CHAI Lujun, WANG Guojin, ZHANG Yu, QIN Kangjia, ZHOU Man, LIANG Xuejie, HAO Junpeng, WANG Hui. ISOLATION AND IDENTIFICATION OF A NEW SULFATE-REDUCING BACTERIUM AND ITS IN SITU REMEDIATION EFFECT OF HEXAVALENT CHROMIUM-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 192-198. doi: 10.13205/j.hjgc.202402023
    [3]TENG Hui, LI Dong, WU Junru. INTERFERENCE OF REMEDIATION AGENTS TO SOIL Cr(Ⅵ) DETERMINATION BY ALKALINE DIGESTION-FLAME ATOMIC ABSORPTION SPECTROMETRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 143-151. doi: 10.13205/j.hjgc.202211020
    [4]JIN Xiao-dan, TIAN Yong-qiang, WU Hao, CHEN He-xiao, WANG Xing-run, CHENG Jin-ping. CHARACTERISTICS OF CHROMIUM POLLUTION AND ITS INFLUENCING FACTORS IN LEATHER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 206-211,219. doi: 10.13205/j.hjgc.202112031
    [5]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [6]LAI Dong-lin, ZHANG Qi, CHEN Ting-ting, CHEN Hui-xia, TONG Xue-jiao, XU Hong-bin, LIU Xing-hai, ZHAO Cai-yun. REMEDIATION PRACTICE OF HEXAVALENT CHROMIUM AND CYANIDE CONTAMINATED SOIL AT THE ORIGINAL SITE OF A MACHINERY PLANT IN ZHANGJIAKOU,CHINA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 75-80. doi: 10.13205/j.hjgc.202006012
    [7]XI Dong-dong, LI Xiao-min, XIONG Zi-xuan, JIANG Zhi, ZHANG Xiao-ming, YANG Wei-chun. SYNERGISTIC REMOVAL OF Cu, Co, Ni AND Cr FROM CONTAMINATED SOIL BY BIOCHAR-SUPPORTED NANOSCALE ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 58-66. doi: 10.13205/j.hjgc.202006010
    [8]YANG Wen-xiao, ZHANG Li, BI Xue, LI Huan-ru, GU Qian. RESEARCH ADVANCEMENT OF STABILIZATION MATERIALS FOR HEXAVALENT CHROMIUM(Ⅵ) CONTAMINATED SITE SOILS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 16-23. doi: 10.13205/j.hjgc.202006003
    [10]Zhang Qingle Dong Jian Zhang Liqing Wang Jixiang Li Zejiao Li Rui, . ADSORPTION CHARACTERISTICS OF HEXAVALENT CHROMIUM ON POPLAR LEAF MODIFIED BY OXALATE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 64-69. doi: 10.13205/j.hjgc.201505014
    [11]Zhao Ligang, Pu Shengyan, Yang Jinyan, Yu Jing, Wang Youle. THE Cr( VI) POLLUTION CHARACTERISTICS OF GROUNDWATER AND SOIL IN THE SURROUNDINGS OF A CHROMIUM SLAG SITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 117-121. doi: 10.13205/j.hjgc.201502026
  • Cited by

    Periodical cited type(7)

    1. 田文娟,郭丽,杜维,郑丹. 柱后衍生-离子色谱法测定固废中的六价铬方法优化. 广州化工. 2024(20): 110-114 .
    2. 杨柳晨,王小钊,邢丹. 铬盐污染土壤六价铬标准物质不确定度评估. 福建分析测试. 2024(06): 53-59 .
    3. 吕旭,韩建. 碱消解-火焰原子吸收光谱法检测土壤中的六价铬方法改进. 山东化工. 2022(13): 89-91+97 .
    4. 褚琳琳,王静云,金晓霞,汪碧芬,孔翠羽. 碱溶液提取-离子交换-电感耦合等离子体质谱法测定土壤中六价铬. 岩矿测试. 2022(05): 826-835 .
    5. 陈秀梅,王靖宜. 碱性微波提取-ICP/MS法测定土壤中六价铬. 环境监测管理与技术. 2022(06): 56-59 .
    6. 邱沙,宋景鹏,陈志国,白鹤,曹文庆,刘艺芸. 原位化学还原技术修复铬污染土壤及其工程应用. 环境科学与技术. 2021(04): 131-139 .
    7. 王世悦. 工作场所中六价铬和总铬火焰原子吸收法的研究. 质量安全与检验检测. 2020(05): 138-139 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.2 %FULLTEXT: 14.2 %META: 81.7 %META: 81.7 %PDF: 4.0 %PDF: 4.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 21.3 %其他: 21.3 %[]: 0.5 %[]: 0.5 %上海: 3.8 %上海: 3.8 %临汾: 0.5 %临汾: 0.5 %丽水: 0.5 %丽水: 0.5 %北京: 4.4 %北京: 4.4 %台州: 3.8 %台州: 3.8 %哈尔滨: 0.5 %哈尔滨: 0.5 %天津: 0.5 %天津: 0.5 %宣城: 1.1 %宣城: 1.1 %常德: 0.5 %常德: 0.5 %张家口: 3.8 %张家口: 3.8 %成都: 1.6 %成都: 1.6 %昆明: 0.5 %昆明: 0.5 %晋城: 1.1 %晋城: 1.1 %朝阳: 0.5 %朝阳: 0.5 %杭州: 2.2 %杭州: 2.2 %武汉: 0.5 %武汉: 0.5 %汕头: 0.5 %汕头: 0.5 %沈阳: 2.7 %沈阳: 2.7 %济源: 0.5 %济源: 0.5 %温州: 1.1 %温州: 1.1 %湖州: 2.2 %湖州: 2.2 %漯河: 1.6 %漯河: 1.6 %福州: 1.1 %福州: 1.1 %秦皇岛: 1.1 %秦皇岛: 1.1 %芒廷维尤: 18.6 %芒廷维尤: 18.6 %苏州: 0.5 %苏州: 0.5 %衢州: 1.1 %衢州: 1.1 %西宁: 8.7 %西宁: 8.7 %贵阳: 0.5 %贵阳: 0.5 %运城: 6.0 %运城: 6.0 %遵义: 0.5 %遵义: 0.5 %邯郸: 1.1 %邯郸: 1.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.5 %重庆: 0.5 %铁岭: 0.5 %铁岭: 0.5 %长沙: 1.1 %长沙: 1.1 %长治: 0.5 %长治: 0.5 %其他[]上海临汾丽水北京台州哈尔滨天津宣城常德张家口成都昆明晋城朝阳杭州武汉汕头沈阳济源温州湖州漯河福州秦皇岛芒廷维尤苏州衢州西宁贵阳运城遵义邯郸郑州重庆铁岭长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (284) PDF downloads(5) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return