Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Han, WANG Jian-long, FENG Cui-min, CAI Zhi-wen, HE Cun-gang, LIU Yan. MONITORING AND EVALUATION OF STORMWATER CONTROL EFFECT VIA LOW-IMPACT DEVELOPMENT IN RESIDENTIAL DISTRICTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 145-150. doi: 10.13205/j.hjgc.202004026
Citation: LI Han, WANG Jian-long, FENG Cui-min, CAI Zhi-wen, HE Cun-gang, LIU Yan. MONITORING AND EVALUATION OF STORMWATER CONTROL EFFECT VIA LOW-IMPACT DEVELOPMENT IN RESIDENTIAL DISTRICTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 145-150. doi: 10.13205/j.hjgc.202004026

MONITORING AND EVALUATION OF STORMWATER CONTROL EFFECT VIA LOW-IMPACT DEVELOPMENT IN RESIDENTIAL DISTRICTS

doi: 10.13205/j.hjgc.202004026
  • Received Date: 2019-06-28
  • A new residential district developed via low impact development (LID) was selected as the research project, the multi-target control effect of total runoff volume and peak flow rate was achieved. The method of comparative analysis under the same rainfall event was adopt, six monitoring sites were selected at each outlet (A to F) in the LID residential district, and an outlet (G) from traditional residential district was selected as the comparison monitoring site, which had similar underlying surface types with the LID residential district. The monitoring results via seven typical rainfall events showed that: compared with traditional residential district, the LID residential district's runoff discharge total volume was decreased by 12.1%~100%, while the pollutant reduction rate was 69.6%~100% and the peak flow reduction rate was 12.3%~100%. By continuous modeling of typical annual rainfall data, the results showed that reduction rate of total runoff discharge volume was 77.3%, and that of pollutants was 66.4%. Therefore, both monitoring and modeling results indicated that the LID residential district could effectively control the total discharge of runoff and pollution load. The above research results could provide technical support for the development of sponge-residential district.
  • 李娜,张念强,丁志雄,等.我国城市内涝问题分析与对策建议[J].中国防汛抗旱,2017, 27(5):77-79

    ,85.
    国家统计局. 中华人民共和国2019年国民经济和社会发展统计公报[N].2020-02-29.
    仇保兴.海绵城市(LID)的内涵、途径与展望[J].建设科技,2015,51(3):71-78.
    王建龙,涂楠楠,席广朋,等.已建小区海绵化改造途径探讨[J].中国给水排水,2017,33(18):1-8.
    康威.建筑与小区低影响开发雨水系统研究[D].重庆:重庆大学,2017.
    李亮.绿色建筑小区景观水体水量调节与水质保障技术研究[D]. 重庆:重庆大学,2016.
    徐宗学,程涛.城市水管理与海绵城市建设之理论基础:城市水文学研究进展[J].水利学报,2019,50(1):53-61.
    NGUYEN T T, NGO H H, GUO W, et al. Implementation of a specific urban water management sponge city[J]. Science of the Total Environment, 2019, 652:147-162.
    BAI Y R, ZHAO N, ZHANG R Y, et al. Storm water management of low impact development in urban areas based on SWMM[J]. Water,2018, 11(1):1-16.
    邹常亮.低影响开发(LID)小区面源污染过程与控制效果研究[D].青岛:青岛大学,2017.
    黄俊杰,沈庆然,李田.植草沟控制道路径流污染效果的现场实验研究[J].环境科学,2015,36(6):2109-2115.
    中华人民共和国住房和城乡建设部. 海绵城市建设评价标准:GB/T 51345-2018[S].北京:中国建筑工业出版社,2019:22.
    国家环境保护局. 水质悬浮物的测定重量法:GB 11901-89[S].北京:中国标准出版社,1990:2.
    乔梦曦.区域开发不同尺度雨水系统关系研究[D].北京:北京建筑大学,2013.
    侯精明,李东来,王小军,等.建筑小区尺度下LID措施前期条件对径流调控效果影响模拟[J].水科学进展,2019,30(1):45-55.
    杨钢,徐宗学,赵刚,等.基于SWMM模型的北京大红门排水区雨洪模拟及LID效果评价[J].北京师范大学学报(自然科学版),2018,54(5):628-634.
  • Relative Articles

    [1]JIANG Zixuan, ZHANG Lanxin, LI Tianyuan, ZHU Enbin, ZHU Fuhe, WEN Zongguo, ZHANG Liping. Analysis of carbon footprint and deep decarbonization potential of recycled polyester filament from waste PET bottles[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 12-20. doi: 10.13205/j.hjgc.202501002
    [2]FU Bin, XU Ping. EXAMPLE ANALYSIS OF CARBON EMISSION STRUCTURE OF RESIDENTIAL WATER SYSTEMS AND THEIR REDUCTION POTENTIAL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 178-184,194. doi: 10.13205/j.hjgc.202304025
    [3]CHEN Wenhao, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 37-44. doi: 10.13205/j.hjgc.202307006
    [4]ZHOU Yixin, ZHI Liling, ZHENG Kaikai, WANG Yan, ZHI Yao, WANG Xiaofei, LI Ji. DIAGNOSIS AND DENITRIFICATION POTENTIAL ANALYSIS OF AN ORBAL OXIDATION DITCH PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 177-181. doi: 10.13205/j.hjgc.202211025
    [5]HAO Shuran, CHEN Zhuo, XU Ao, WU Yinhu, LI Guoqiang, NI Xinye, HU Hongying. ANALYSIS OF WATER REUSE SITUATIONS AND POTENTIALS IN MAIN CITIES IN THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 1-8,79. doi: 10.13205/j.hjgc.202210001
    [6]ZHAO Gang, TANG Jianguo, XU Jingcheng, LUO Jingyang, JIANG Ming, YUAN Xianchen, ZHOU Chuanting. COMPARATIVE ANALYSIS ON ENERGY AND CARBON EMISSION OF TYPICAL SLUDGE TREATMENT PROJECTS IN CHINA AND THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 9-16. doi: 10.13205/j.hjgc.202212002
    [7]XU Ao, WU Yin-hu, CHEN Zhuo, CUI Qi, BAI Yu, LI Kui-xiao, SHI Yu-long, GAO Qiang, HU Hong-ying. MUNICIPAL WASTEWATER RECLAMATION IN BEIJING:STATE-OF-THE-ART AND FUTURE POTENTIAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 1-6,47. doi: 10.13205/j.hjgc.202109001
    [8]HE Jia-ni, LIU Yi-li, LI Zhu-lin, QIU Zhao-wen. ENERGY CONSUMPTION ANALYSIS OF MUNICIPAL SOLID WASTE CLASSIFIED TRANSPORTATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 136-142. doi: 10.13205/j.hjgc.202110019
    [9]ZHANG Xiao-qing, HAN Ge-qi. ANALYSIS OF EFFICIENCY AND ENERGY CONSUMPTION OF ELECTROSTATIC PRECIPITATOR BY DIFFERENT ELECTRIC CONTROL METHODS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 135-141. doi: 10.13205/j.hjgc.202003023
    [13]Liu Minghui, Yu Hongbing, Li Hongna, Peng Xinhong, Wu Xiaoyan, Teng Fei, Wang Yinghui. ENERGY AUDIT FOR A EDIBLE OIL ENTERPRISE IN TIANJIN CITY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 145-148. doi: 10.13205/j.hjgc.201503029
  • Cited by

    Periodical cited type(10)

    1. 刘小芳,沈剑,殷雪梅,封吉猛,王欣泽. 污水处理厂再生水排放及回用的环境与生态影响研究进展. 环境工程技术学报. 2025(01): 249-258 .
    2. 李佳奇,秦国帅,李炳垠,邵思勇. 日本节水产业发展经验及启示. 水利发展研究. 2025(02): 61-67 .
    3. 庞园,钟倩如. 广州市再生水利用管理办法研究. 水利技术监督. 2024(03): 56-60+85+89 .
    4. 林慧,刘达,黄本胜,洪昌红,邱静,邱颂曦,王珍. 国外再生水资源在农业灌溉中的应用及启示. 广东水利水电. 2024(03): 100-104 .
    5. 王颖,虞静静,蒋鸿海,夏珊珊,张改兰,王兰英. 宁波市区污水处理的现状及对策. 浙江水利水电学院学报. 2024(02): 34-38 .
    6. 韩宇飞,吴凤平,王维,季英雯,王瑞方,王晓宇. 再生水利用配置的基本要素与理论模型研究. 自然资源学报. 2024(06): 1450-1472 .
    7. 张卓,李艳红,闫伟,任安然,李晓明,刘刚,李朋,侯锋. 再生水输配过程的腐蚀结垢和微生物风险. 环境保护科学. 2024(03): 10-19 .
    8. 孙丰凯,张润泽,纪明德,庄林岚,刘华清,张建. 基于生物生态耦合的城市污水绿色再生利用. 环境保护. 2023(06): 61-65 .
    9. 郭洪聪,王立权,滕云,董鹤,王姊怡,杨建武. 哈尔滨市再生水利用与配置研究. 水利科技与经济. 2023(07): 13-18 .
    10. 李敏,姚俊,周宏伟,陆沈钧,杨景茜,李岚兰. 太湖流域片再生水利用模式与对策研究. 中国水利. 2023(17): 33-36 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.8 %FULLTEXT: 8.8 %META: 87.0 %META: 87.0 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.7 %其他: 16.7 %Central District: 0.7 %Central District: 0.7 %上海: 1.3 %上海: 1.3 %北京: 3.3 %北京: 3.3 %台州: 2.7 %台州: 2.7 %宣城: 0.7 %宣城: 0.7 %张家口: 1.3 %张家口: 1.3 %杭州: 0.7 %杭州: 0.7 %湖州: 2.0 %湖州: 2.0 %芒廷维尤: 60.7 %芒廷维尤: 60.7 %苏州: 0.7 %苏州: 0.7 %衢州: 2.7 %衢州: 2.7 %西宁: 4.7 %西宁: 4.7 %重庆: 1.3 %重庆: 1.3 %长沙: 0.7 %长沙: 0.7 %其他Central District上海北京台州宣城张家口杭州湖州芒廷维尤苏州衢州西宁重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (175) PDF downloads(3) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return