Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Mu, WANG Shao-hua, WANG Tong-chun, DUAN Meng-yuan, SU Ying-qiang, HAN Hui-ming, LIN Xiao-feng, LI Ze-hua. A LARGE-SCALE ENGINEERING APPLICATION OF MICROFILTRATION-NANOFILTRATION COMBINED TECHNOLOGY IN DRINKING WATER ADVANCED TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 151-155. doi: 10.13205/j.hjgc.202107020
Citation: YIN Ding-kun, CHEN Zheng-xia, YANG Meng-qi, JIA Hai-feng, XU Ke, WANG Teng-xu. EVALUATION OF RUNOFF CONTROL EFFECT IN SPONGE CITY CONSTRUCTION BASED ON ONLINE MONITORING+SIMULATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 151-157. doi: 10.13205/j.hjgc.202004027

EVALUATION OF RUNOFF CONTROL EFFECT IN SPONGE CITY CONSTRUCTION BASED ON ONLINE MONITORING+SIMULATION MODELING

doi: 10.13205/j.hjgc.202004027
  • Received Date: 2020-01-17
  • In this study, we took a typical sponge city project in Qingdao area as the study case, and constructed a SWMM model through collecting, sorting, and generalizing the watershed data. Actual rainfall-runoff monitoring data in rainy season of 2018 was employed for calibration and validation of the model. The results revealed that the construction of sponge city endowed the study area with reduced runoff, and increased infiltration and stagnant capabilities. The results showed that the proportion of rainfall to form runoff decreased from 56% to 29% and the proportion of rainfall to infiltrate increased from 40% to 60%. The depth of detention storage increased from 0.63 mm to 5 mm. The construction target of the study area was to control the total annual runoff at 75%, and the corresponding design rainfall was 27.4 mm. The runoff capture ratio of single event in the research area before and after sponge reconstruction changed significantly. When the short-term (120 min) design rainfall with return period from 1~10 years was used as the model boundary condition for simulation, the runoff capture ratio after sponge reconstruction increased by 26%~34%. It was considered that the study area had basically reached the sponge city construction requirements on rainfall runoff control.
  • 曹宇. 福州市治水融入新理念润泽民生美"榕"颜:南方复杂水环境地区的海绵城市建设实践[J]. 城乡建设, 2019(24):48-52.
    徐爱霞. 加强绿色与灰色结合的水利基础设施建设[J]. 水利规划与设计, 2020(1):12-15.
    彭世瑾, 史敬华, 胡爱清, 等. 海绵城市建设中灰绿结合雨水基础设施实施案例:雨水调蓄池[J]. 建设科技, 2018(19):84-87.
    许彬. 海绵城市建设中模型应用现状及思考[J]. 江苏城市规划, 2019(5):42-44.
    郭效琛, 赵冬泉, 崔松, 等. 海绵城市"源头-过程-末端"在线监测体系构建:以青岛市李沧区海绵试点区为例[J]. 给水排水, 2018, 44(8):24-28.
    李朋, 贺佳, 吴朱昊, 等. SWMM模型在海绵城市建设径流控制模拟中的应用[J]. 城市道桥与防洪, 2019(11):69-72,80

    ,12.
    XU T, LI K, BERNARD A E, et al. Optimal adaptation pathway for sustainable low impact development planning under deep uncertainty of climate change:a greedy strategy[J]. Journal of Environmental Management, 2019, 248:109280.
    MAO X H, JIA H F, SHAW L Y. Assessing the ecological benefits of aggregate LID-BMPs through modelling[J]. Ecological Modelling. 2017, 353(10):139-149.
    MARK R, SUN F B, ZHANG Y Y, et al. Evaluating sponge city volume capture ratio at the catchment scale using SWMM[J]. Journal of Environmental Management, 2019, 264:745-757.
    LI Q, WANG F, YU Y, et al. Comprehensive performance evaluation of LID practices for the sponge city construction:a case study in Guangxi, China[J]. Journal of Environmental Management, 2019, 231:10-20.
    邱倩影, 李蔷, 陈博, 等. 基于SWMM模型的建筑小区类项目海绵改造径流控制效果模拟分析:以北京国家海绵城市试点区内某小学为例[J]. 建设科技, 2019, (7):67-67,87.
    张爱玲, 宫永伟, 印定坤, 等. 济南历阳河流域海绵城市建设的水文效应分析[J]. 中国给水排水, 2018, 34(13):135-138.
  • Relative Articles

    [1]LIU Wenkai, WANG Kunpeng, WANG Xiaomao, HUANG Xia. HIGHLY SELECTIVE NANOFILTRATION SEPARATION TECHNOLOGY FACILITATES RESOURCE EXTRACTION AND RECOVERY FROM HIGH SALINITY ENVIRONMENTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 29-41. doi: 10.13205/j.hjgc.202409003
    [2]KONG Wanting, LI Xuesong, WANG Zhiwei. RECENT ADVANCES IN ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY TECHNOLOGY FOR CHARACTERIZATION OF FOULING AND MASS TRANSFER PROCESSES ON NANOFILTRATION AND REVERSE OSMOSIS MEMBRANES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 51-62. doi: 10.13205/j.hjgc.202409005
    [3]YANG Yiqing, ZHANG Yuxiang, ZHANG Yufei, LI Yaohuang, WU Mingyu, ZHANG Nan, CHEN Xiaoqiang. GAS PRODUCTION AND LEACHATE PROPERTIES OF MUNICIPAL SOLID WASTE WITH CONTINUOUS INJECTION OF CONCENTRATED NF LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 148-154. doi: 10.13205/j.hjgc.202303020
    [4]ZENG Guangshu, ZHOU Zhenchao, LIN Yanhan, GE Ziye, LIN Zejun, SHUAI Xinyi, ZHOU Jinyu, CHEN Hong. DISTRIBUTION OF ANTIBIOTIC RESISTANCE GENES AND EXPOSURE RISK IN DRINKING WATER: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 114-123. doi: 10.13205/j.hjgc.202309014
    [5]FENG Guizhen, HUANG Lin, FAN Shixiu. EFFECT OF ORGANIC MATTER CHARACTERISTICS IN RAW WATER ON NANOFILTRATION MEMBRANE FOULING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 1-6,42. doi: 10.13205/j.hjgc.202302001
    [6]ZHOU Kang, WANG Zhen-kai, ZHANG Gui-cheng, CHEN Xin-an, CHENG Yan, LUO Gang, SUN Sheng-peng. BIODEGRADATION AND TERTIARY TREATMENT EFFICIENCIES OF TYPICAL PHARMACEUTICAL MICROPOLLUTANTS BY MBBR AND UVC-BASED ADVANCED OXIDATION PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 37-43. doi: 10.13205/j.hjgc.202205006
    [7]CHANG Jia-yu, YU Shui-li, LIU Hua-fa, GAO Le, LIU Gui-cai. EVOLUTION IN MEMBRANE PERFORMANCE OF GROUNDWATER SOURCED WATERWORKS DURING LONG-TERM OPERATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 73-79. doi: 10.13205/j.hjgc.202107008
    [8]YANG Zhe, DAI Ruo-bin, WEN Yue, WANG Li, WANG Zhi-wei, TANG Chu-yang. RECENT PROGRESS OF NANOFILTRATION MEMBRANE IN WATER TREATMENT AND WATER REUSE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 1-12. doi: 10.13205/j.hjgc.202107001
    [9]XU Lan, ZHOU Zhen-chao, ZHU Lin, LIU Yang, SHUAI Xin-yi, LIN Ze-jun, CHEN Hong. REMOVAL EFFICIENCY OF ANTIBIOTIC RESISTOME IN ACTIVATED CARBON DRINKING WATER PURIFIERS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 27-33. doi: 10.13205/j.hjgc.202106005
    [10]SAI Shi-jie, LI Mai-jun, DANG Ping, LIU Hui, ZHANG Na, HUANG Xia. APPLICATION OF HIGH SEPARATION NANOFILTRATION PROCESS IN ZERO DISCHARGE OF HIGH SALT WASTEWATER FROM COAL CHEMICAL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 173-178. doi: 10.13205/j.hjgc.202107024
    [11]YANG Shu-jun, ZHANG Chen, HE Jun, XIONG Jian-ying, LI Xue-ting, HUANG Xiao-wen. ENGINEERING APPLICATION OF NANOFILTRATION & THREE-LEVELS REDUCTION OF NANOFILTRATION CONCENTRATE TECHNOLOGY FOR ADVANCED TREATMENT OF LANDFILL LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 81-87,114. doi: 10.13205/j.hjgc.202006013
    [12]YANG Pei-lin, WANG Ji, WANG Zhi-kang, ZHANG Guang-long, QIN Fan-xin. PHTHALATE ESTERS POLLUTION CHARACTERISTICS AND HEALTH RISK OF DRINKING WATER SOURCES IN GUIYANG[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 172-177,27. doi: 10.13205/j.hjgc.202001028
    [13]FU Rao, ZHANG Wen-long, FENG Jiang-tao, YAN Wei. SYNTHESIZATION OF ANATASE TiO2 SYNTHESIZED AT LOW TEMPERATURE, AND ITS ADSORPTION PERFORMANCE ON FLUORIDE ION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 70-76. doi: 10.13205/j.hjgc.202002009
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.2 %FULLTEXT: 8.2 %META: 89.8 %META: 89.8 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.3 %其他: 11.3 %China: 0.8 %China: 0.8 %[]: 0.2 %[]: 0.2 %上海: 5.4 %上海: 5.4 %东莞: 1.7 %东莞: 1.7 %临汾: 0.2 %临汾: 0.2 %临沂: 0.2 %临沂: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %伊犁: 0.2 %伊犁: 0.2 %佛山: 0.6 %佛山: 0.6 %保定: 0.8 %保定: 0.8 %信阳: 0.6 %信阳: 0.6 %北京: 7.6 %北京: 7.6 %十堰: 1.4 %十堰: 1.4 %南京: 2.6 %南京: 2.6 %厦门: 0.3 %厦门: 0.3 %台州: 1.4 %台州: 1.4 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.6 %哈尔滨: 0.6 %唐山: 0.2 %唐山: 0.2 %嘉兴: 1.6 %嘉兴: 1.6 %大连: 0.6 %大连: 0.6 %天津: 5.0 %天津: 5.0 %太原: 0.5 %太原: 0.5 %宁波: 0.9 %宁波: 0.9 %宜春: 0.5 %宜春: 0.5 %宣城: 0.8 %宣城: 0.8 %宿州: 0.3 %宿州: 0.3 %常州: 0.8 %常州: 0.8 %常德: 0.2 %常德: 0.2 %广州: 0.6 %广州: 0.6 %张家口: 0.3 %张家口: 0.3 %徐州: 0.8 %徐州: 0.8 %成都: 0.8 %成都: 0.8 %扬州: 2.3 %扬州: 2.3 %无锡: 0.2 %无锡: 0.2 %昆明: 0.3 %昆明: 0.3 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.7 %杭州: 1.7 %武汉: 1.4 %武汉: 1.4 %江门: 0.9 %江门: 0.9 %沈阳: 0.2 %沈阳: 0.2 %济南: 0.5 %济南: 0.5 %济源: 0.2 %济源: 0.2 %海口: 0.5 %海口: 0.5 %清远: 0.2 %清远: 0.2 %温州: 1.4 %温州: 1.4 %湖州: 0.5 %湖州: 0.5 %漯河: 11.2 %漯河: 11.2 %烟台: 0.2 %烟台: 0.2 %盐城: 0.3 %盐城: 0.3 %石家庄: 0.6 %石家庄: 0.6 %秦皇岛: 0.2 %秦皇岛: 0.2 %绍兴: 0.2 %绍兴: 0.2 %舟山: 0.2 %舟山: 0.2 %芒廷维尤: 6.2 %芒廷维尤: 6.2 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.2 %苏州: 0.2 %萍乡: 0.2 %萍乡: 0.2 %衡阳: 0.3 %衡阳: 0.3 %衢州: 1.1 %衢州: 1.1 %西宁: 9.5 %西宁: 9.5 %西安: 0.8 %西安: 0.8 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.6 %运城: 1.6 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.1 %郑州: 1.1 %重庆: 0.6 %重庆: 0.6 %长沙: 3.0 %长沙: 3.0 %长治: 0.2 %长治: 0.2 %阳泉: 0.3 %阳泉: 0.3 %青岛: 0.5 %青岛: 0.5 %其他China[]上海东莞临汾临沂乌鲁木齐伊犁佛山保定信阳北京十堰南京厦门台州合肥哈尔滨唐山嘉兴大连天津太原宁波宜春宣城宿州常州常德广州张家口徐州成都扬州无锡昆明晋城朝阳杭州武汉江门沈阳济南济源海口清远温州湖州漯河烟台盐城石家庄秦皇岛绍兴舟山芒廷维尤芝加哥苏州萍乡衡阳衢州西宁西安贵阳运城遵义邯郸郑州重庆长沙长治阳泉青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (348) PDF downloads(9) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return