Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Geng, LI Haibo, LI Yinghua, CHEN Xi. SOLIDIFICATION/STABILIZATION OF As IN SOIL USING BIOCHAR LOADED WITH FERRIC MANGANESE BINARY OXIDES(FMBO)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 118-125. doi: 10.13205/j.hjgc.202203018
Citation: GONG Jia-hui, HOU Jing-ming, XUE Yang, ZHANG Da-wei, ZHANG Zhao-an, YANG Shao-xiong, HAN Hao. COMPUTATIONAL EFFICIENCY OF GPU ACCELERATION IN NUMERICAL SIMULATION OF URBAN RAIN-FLOOD PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 164-169,175. doi: 10.13205/j.hjgc.202004029

COMPUTATIONAL EFFICIENCY OF GPU ACCELERATION IN NUMERICAL SIMULATION OF URBAN RAIN-FLOOD PROCESS

doi: 10.13205/j.hjgc.202004029
  • Received Date: 2020-01-17
  • In order to quantitatively analyze the computational efficiency of GPU technology for urban rain-flood process numerical simulation, the numerical model based on GPU technology was used to simulate the process of rain and flood in typical cities with different rainfall and grid resolution, and to compare and analyze the efficiency and law of GPU acceleration. The results showed that GPU technology had more advantages than CPU for the simulation of rain-flood process in cities, which could increase the computational efficiency by 23.88~158.72 times, compared with CPU in different situations. In the case of heavy rainstorms and high-resolution grids, the speed-up effect of the GPU model was more obvious, and it kept about 0.29%~8.43% higher than the short return period rainstorms and low-resolution grids conditions. And this technology was proved suitable for simulation of large-scale and high-resolution problems. The model was thus considered as a technical support for rapid simulation forecasting of floods processes.
  • 周蕾, 吴先华, 吉中会. 考虑恢复力的洪涝灾害损失评估研究进展[J]. 自然灾害学报, 2017, 26(2):11-21.
    CRED. EM-DAT, The International Disaster Database[EB/OL]. 2018.http://emdat.be/emdat_db/.
    姜仁贵, 韩浩, 解建仓, 等. 变化环境下城市暴雨洪涝研究进展[J]. 水资源与水工程学报, 2016, 27(3):11-17.
    王志力, 耿艳芬, 金生. 具有复杂计算域和地形的二维浅水流动数值模拟[J]. 水利学报, 2005,36(4):439-444.
    苑希民, 田福昌, 王丽娜. 漫溃堤洪水联算全二维水动力模型及应用[J]. 水科学进展, 2015, 26(1):83-90.
    NEAL J C, FEWTRELL T J, BATES P D, et al. A comparison of three parallelisation methods for 2D flood inundation models[J]. Environmental Modelling & Software, 2010, 25(4):398-411.
    SHARMA A K, LOCKE B R, FINNEY W C. A preliminary study of pulsed streamer corona discharge for the degradation of phenolin aqueous solutions[J]. Hazardous Waste and Hazardous Material,1993,10(2):209-219.
    LACASTA A, MORALES-HERNáNDEZ, M, MURILLO J, et al. An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes[J]. Advances in Engineering Software, 2014, 78:1-15.
    赵旭东, 赵杨, 孙家文, 等. 基于GPU加速的潮流模型及其在岛群二维水动力数值模拟中的应用[J]. 海洋环境科学, 2017, 36(5):781-790.
    LIANG Q H, SMITH L S. A high-performance integrated hydrodynamic modelling system for urban flood simulations[J]. Journal of Hydroinformatics, 2015, 17(4):518-533.
    侯精明, 王润, 李国栋, 等. 基于动力波法的高效高尺度城市雨洪过程数值模型[J]. 水力发电学报, 2018, 37(3):40-49.
    李东来, 侯精明, 王新宏, 等. 河床冲淤对洪水演进影响数值模拟研究[J].泥沙研究,2018,43(5):13-20.
    侯精明, 李桂伊, 李国栋, 等. 高效高精度水动力模型在洪水演进中的应用研究[J]. 水力发电学报, 2018, 37(2):96-107.
    刘菲菲, 侯精明, 郭凯华, 等. 基于全水动力模型的流域雨洪过程数值模拟[J]. 水动力学研究与进展(A辑), 2018, 33(6):778-785.
    HOU J M, LIANG Q H, SIMONS F, et al. A stable 2D unstructured shallow flow model for simulations of wetting and drying over rough terrains[J]. Computers & Fluids, 2013, 82(17):132-147.
    YU C S, DUAN J. Two-dimensional depth-averaged finite volume model for unsteady turbulent flow[J]. Journal of Hydraulic Research, 2012, 50(6):599-611.
    SIVAKUMAR P, HYAMS D G, TAYLOR L K, et al. A primitive-variable Riemann method for solution of the shallow water equations with wetting and drying[J]. Journal of Computational Physics, 2009, 228(19):7452-7472.
    HOU J M, LIANG Q H, SIMONS F, et al. A 2D well-balanced shallow flow model for unstructured grids with novel slope source term treatment[J]. Advances in Water Resources, 2013, 52(2):107-131.
    LIANG Q H, MARCHE F. Numerical resolution of well-balanced shallow water equations with complex source terms[J]. Advances in Water Resources, 2009, 32(6):873-884.
    HUBBARD M E. Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids[J]. Journal of Computational Physics, 1999, 155(1):54-74.
    侯精明, 李东来, 王小军, 等. 建筑小区尺度下LID措施前期条件对径流调控效果影响模拟[J]. 水科学进展, 2019, 30(1):45-55.
    侯精明, 郭凯华, 王志力, 等. 设计暴雨雨型对城市内涝影响数值模拟[J]. 水科学进展, 2017, 28(6):820-828.
  • Relative Articles

    [1]XIE Wei, YUAN Jiajia, YUAN Huizhou, KE Shuizhou. ADSORPTION PERFORMANCE AND MECHANISM OF SULFAMETHOXAZOLE BY ACID/ALKALI MODIFIED CANNA INDICA BIOCHARS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 201-209. doi: 10.13205/j.hjgc.202412024
    [2]WANG Xingming, WANG Ying, FAN Tingyu, CHU Zhaoxia, DONG Zhongbing, DONG Peng. PATHWAYS OF HEAVY METALS ABSORPTION BY EARTHWORMS IN SLUDGE VERMI COMPOSTING ENHANCED BY RICE HUSK CHARCOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 147-154. doi: 10.13205/j.hjgc.202410018
    [3]LENG Jiewen, SHI Ke, WANG Xuejing, KOU Wei, FU Xiaowei, SUN Zhaonan. ADSORPTION OF TETRACYCLINE ON BIOCHAR PREPARED FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 75-82. doi: 10.13205/j.hjgc.202405010
    [4]CHEN Long, LI Kai, TU Zhi, ZHOU Yu, ZHANG Jilong, MI Baobin, WU Fangfang. ADSORPTION PERFORMANCE AND MECHANISM OF Zn2+ ON MICROWAVE-PREPARED ALKALI LIGNIN BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 100-108. doi: 10.13205/j.hjgc.202308013
    [5]XU Wenjun, HUANG Dandan, LIANG Mingshen, XU Qiyong. EFFECT OF HYDROGEN SUFIDE ON METHANE OXIDATION OF BIOCHAR-AMENDED LANDFILL COVER SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 120-126. doi: 10.13205/j.hjgc.202202019
    [6]JIANG Yuzhu, HUI Helong, LIU Hongyi, DING Guangchao, LU Wenyi, LI Songgeng. STUDY ON THE EFFECTIVENESS OF TEXTILE DYING SLUDGE BIOCHAR IN TREATING REFRACTORY ORGANIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 32-39. doi: 10.13205/j.hjgc.202210005
    [7]WANG Ziting, ZOU Jiawei, ZHOU Jiti, JIN Ruofei. PREPARATION OF GOETHITE-MODIFIED BIOCHAR AND ITS ADSORPTION CAPACITY ON Cr(Ⅵ)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 98-104. doi: 10.13205/j.hjgc.202211014
    [8]WANG Yu-hang, YU Wei, ZHAO Si-yu, LIU Shan, JIANG Xiao-hui, LI Qi. ADSORPTION OF ANTIBIOTIC DRUGS IN WATER ENVIRONMENT BY MODIFIED BIOCHAR:A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 91-99,134. doi: 10.13205/j.hjgc.202112014
    [9]DAI Li-ping, ZHU Han-quan, KE Xiong, CHEN Ri-yao, LIU Yao-xing. REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS SOLUTION USING BIPOLAR MEMBRANE ELECTRODIALYSIS TECHNIQUE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 89-95. doi: 10.13205/j.hjgc.202111011
    [10]YANG Liu-yang, WANG Lei, CUI Chang-hao, LIU Mei-jia, LI Li, YAN Da-hai. TRANSFORMATION OF Cr CHEMICAL FORMS IN CEMENT KILNS CO-PROCESSING Cr CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 185-190. doi: 10.13205/j.hjgc.202110026
    [11]ZHOU Jun, LI Yan, GUAN Yi-dong, HUANG Li-dong, JIN Hong-mei, XIAO Qiong, SONG Jiang-sheng. MIXED SORPTION OF THREE AQUEOUS SULFONAMIDES ONTO THE BIOCHAR DERIVED FROM POPLAR WOOD CHIPS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 1-6,13. doi: 10.13205/j.hjgc.202103001
    [12]LI Sheng-hong, ZHU Fen-fen. COMPARISON AND CHARACTERISTICS OF BIOCHAR BY SLUDGE AND DEGREASING-SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 154-159,192. doi: 10.13205/j.hjgc.202109022
    [13]WU Qin-yue, LIU He, ZHENG Wei, LIU Hong-bo, ZHENG Zhi-yong, ZHANG Yan, ZHANG Cui-cui. PREPARATION OF BIOCHAR BY PYROLYSIS OF PHARMACEUTICAL SLUDGE AND ITS ADSORPTION PERFORMANCE IN TREATING PHARMACEUTICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013
    [14]LI Rong, XU Duo, WEI Jie, WANG Dong-tian. PREPARATION OF ADSORBENT BY COMBINED DRINKING WATER TREATMENT SLUDGE AND POWDERED ACTIVATED CARBON AND ITS AMMONIUM REMOVAL PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 95-100,112. doi: 10.13205/j.hjgc.202009016
    [15]ZHAO Jie, HE Yu-hong, ZHANG Xiao-ming, LI Qi, YANG Wei-chun. EFFECT ON Cr(Ⅵ) ADSORPTION PERFORMANCE OF ACID-BASE MODIFIED BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 28-34. doi: 10.13205/j.hjgc.202006005
    [16]LI Pei-pei, ZHOU Yu-zhou, XIANG Yu-jia, ZHOU Yao-yu, ZHU Hong-mei, RONG Xiang-min. ADSORPTION PERFORMANCE OF P-ARSANILIC ACID IN AQUEOUS SOLUTION BY BIOCHAR SUPPORTED MANGANESE FERRATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 75-79,86. doi: 10.13205/j.hjgc.202001011
    [17]LIU Ling-yan, CHEN Shuang-rong, SONG Xue-yan, WANG Sheng-nan, YU Jun-xia, LU Yi-feng. RESEARCH PROGRESS IN REMOVAL OF PHOSPHATE FROM WATER BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 91-97. doi: 10.13205/j.hjgc.202011015
    [18]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [19]FANG Wei, JIANG Xian-ying, LI Jing-shi, LUO Qi-jin. ADSORPTION CAPABILITY OF GRAPHENE/SiO2-POLYPYRROLE COMPOSITES FOR Cr(Ⅵ) IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 53-59. doi: 10.13205/j.hjgc.202011009
    [20]Xu Yanzhe Fang Zhanqiang, . ADVANCES ON REMEDIATION OF HEAVY METAL IN THE SOIL BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 156-159. doi: 10.13205/j.hjgc.201502035
  • Cited by

    Periodical cited type(17)

    1. 黎媛萍,邹斌,贾舜尧,陈鹏宇,朱晨阳,刘政伟,周天运,赵一,朱梨. 污泥基生物炭的制备及其在环境污染治理中的应用. 湖南城市学院学报(自然科学版). 2024(01): 68-73 .
    2. 冷杰雯,时珂,王雪婧,寇巍,付晓伟,孙兆楠. 市政污泥基制备生物炭吸附四环素的性能研究. 环境工程. 2024(05): 75-82 . 本站查看
    3. 谢鹏程,高海涛,熊健,杨博,黄瑞卿,周海洋,李伟. 污泥生物炭的制备及其对亚甲基蓝的吸附研究. 应用化工. 2024(05): 1071-1075 .
    4. 张婉婷,李飞跃. 污泥生物炭的制备及其应用研究进展. 鲁东大学学报(自然科学版). 2024(04): 370-377 .
    5. 林金毫,黄建智,李衍亮. 基于玉米秸秆和荔枝树枝生物炭的电化学传感器对水中镉离子的检测. 微纳电子技术. 2024(11): 179-188 .
    6. 陈伟华,徐大勇,曾繁春. 不同温度热解制备污泥生物炭粒处理酸性矿山废水的试验研究. 地球与环境. 2024(06): 782-792 .
    7. 曾涛涛,农海杜,沙海超,陈胜兵,张晓玲,刘金香. 污泥基生物炭负载纳米零价铁去除Cr(Ⅵ)的性能与机制. 复合材料学报. 2023(02): 1037-1049 .
    8. 吕思璐,刘天,王旭,左开霞,谢燕华. 硫化亚铁改性生物炭对水中Cr(Ⅵ)的去除机理研究. 中国环境科学. 2023(08): 3935-3945 .
    9. 曹秀芹,刘丰,柴莲莲,朱开金,谭俊华. 污泥生物炭制备与其对土壤环境影响的研究进展. 环境工程. 2022(03): 203-211 . 本站查看
    10. 张奎,王雪梅,李玉环,张瑜,刘梦娟,蒋雪萍,季宏兵. 硫改性牛粪生物炭对Hg~(2+)的高效吸附及其机理. 环境工程. 2022(04): 79-88 . 本站查看
    11. 翟付杰,张超,宋刚福,姜时欣,单保庆,宋志鑫. 木棉生物炭对水体中Cr(Ⅵ)的吸附特性和机制研究. 环境科学学报. 2021(05): 1891-1900 .
    12. 梁宁,莫福金,周街荣,王军正. 污泥生物炭制备及其对磷的吸附性能研究. 无机盐工业. 2021(06): 174-179 .
    13. 王志朴,热则耶,张大旺,刘丹,赵清英,舒新前. 污泥基生物炭用于土壤中Cr的钝化及作用机制分析. 环境工程. 2021(05): 178-183 . 本站查看
    14. 何苑静,张定定,王曦,梁玺静,许士洪,李登新. 改性水热炭同时吸附溶液中Cr(Ⅵ)和Cd(Ⅱ). 化工环保. 2021(05): 623-629 .
    15. 李胜红,朱芬芬. 原污泥与脱脂污泥制备生物炭的比较及其特性分析. 环境工程. 2021(09): 154-159+192 . 本站查看
    16. 周岩,任玉忠,王玮涵. 污泥生物炭的制备及处理印染废水效能试验研究. 工业用水与废水. 2021(06): 45-48 .
    17. 李艺,史会剑,吴春辉,刘忠林,高诗倩,刘光辉,王宇辰. 阳离子表面活性剂改性沸石吸附水体中重金属的研究综述. 净水技术. 2020(12): 73-79 .

    Other cited types(15)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.2 %FULLTEXT: 11.2 %META: 86.4 %META: 86.4 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 21.2 %其他: 21.2 %China: 0.8 %China: 0.8 %上海: 3.2 %上海: 3.2 %东莞: 0.4 %东莞: 0.4 %临汾: 0.8 %临汾: 0.8 %云浮: 0.4 %云浮: 0.4 %伊利诺伊州: 1.2 %伊利诺伊州: 1.2 %保定: 1.6 %保定: 1.6 %兰州: 1.2 %兰州: 1.2 %北京: 5.2 %北京: 5.2 %十堰: 0.8 %十堰: 0.8 %厦门: 0.4 %厦门: 0.4 %台州: 0.4 %台州: 0.4 %哈尔滨: 1.2 %哈尔滨: 1.2 %天津: 0.4 %天津: 0.4 %安康: 0.4 %安康: 0.4 %常州: 0.4 %常州: 0.4 %常德: 0.4 %常德: 0.4 %广州: 0.8 %广州: 0.8 %张家口: 1.6 %张家口: 1.6 %成都: 0.8 %成都: 0.8 %拉贾斯坦邦: 0.4 %拉贾斯坦邦: 0.4 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.4 %朝阳: 0.4 %杭州: 1.2 %杭州: 1.2 %武汉: 1.2 %武汉: 1.2 %济南: 0.4 %济南: 0.4 %济源: 0.8 %济源: 0.8 %湖州: 0.8 %湖州: 0.8 %漯河: 1.2 %漯河: 1.2 %漳州: 0.4 %漳州: 0.4 %石家庄: 2.0 %石家庄: 2.0 %福州: 0.8 %福州: 0.8 %芒廷维尤: 16.8 %芒廷维尤: 16.8 %芝加哥: 1.6 %芝加哥: 1.6 %苏州: 0.4 %苏州: 0.4 %衢州: 1.2 %衢州: 1.2 %西宁: 21.2 %西宁: 21.2 %运城: 2.8 %运城: 2.8 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %重庆: 0.8 %重庆: 0.8 %长治: 0.4 %长治: 0.4 %其他China上海东莞临汾云浮伊利诺伊州保定兰州北京十堰厦门台州哈尔滨天津安康常州常德广州张家口成都拉贾斯坦邦晋城朝阳杭州武汉济南济源湖州漯河漳州石家庄福州芒廷维尤芝加哥苏州衢州西宁运城遵义邯郸重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (171) PDF downloads(7) Cited by(32)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return