Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Dong, QI Junwen, XU Zunzhu, ZHANG Jiwen, JIN Xiaoxian, LI Jiansheng. ADSORPTION PERFORMANCE OF TOLUENE ON HYDROPHOBIC MODIFIED MOLECULAR SIEVES UNDER HIGH HUMIDITY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 66-72,81. doi: 10.13205/j.hjgc.202302010
Citation: GONG Jia-hui, HOU Jing-ming, XUE Yang, ZHANG Da-wei, ZHANG Zhao-an, YANG Shao-xiong, HAN Hao. COMPUTATIONAL EFFICIENCY OF GPU ACCELERATION IN NUMERICAL SIMULATION OF URBAN RAIN-FLOOD PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 164-169,175. doi: 10.13205/j.hjgc.202004029

COMPUTATIONAL EFFICIENCY OF GPU ACCELERATION IN NUMERICAL SIMULATION OF URBAN RAIN-FLOOD PROCESS

doi: 10.13205/j.hjgc.202004029
  • Received Date: 2020-01-17
  • In order to quantitatively analyze the computational efficiency of GPU technology for urban rain-flood process numerical simulation, the numerical model based on GPU technology was used to simulate the process of rain and flood in typical cities with different rainfall and grid resolution, and to compare and analyze the efficiency and law of GPU acceleration. The results showed that GPU technology had more advantages than CPU for the simulation of rain-flood process in cities, which could increase the computational efficiency by 23.88~158.72 times, compared with CPU in different situations. In the case of heavy rainstorms and high-resolution grids, the speed-up effect of the GPU model was more obvious, and it kept about 0.29%~8.43% higher than the short return period rainstorms and low-resolution grids conditions. And this technology was proved suitable for simulation of large-scale and high-resolution problems. The model was thus considered as a technical support for rapid simulation forecasting of floods processes.
  • 周蕾, 吴先华, 吉中会. 考虑恢复力的洪涝灾害损失评估研究进展[J]. 自然灾害学报, 2017, 26(2):11-21.
    CRED. EM-DAT, The International Disaster Database[EB/OL]. 2018.http://emdat.be/emdat_db/.
    姜仁贵, 韩浩, 解建仓, 等. 变化环境下城市暴雨洪涝研究进展[J]. 水资源与水工程学报, 2016, 27(3):11-17.
    王志力, 耿艳芬, 金生. 具有复杂计算域和地形的二维浅水流动数值模拟[J]. 水利学报, 2005,36(4):439-444.
    苑希民, 田福昌, 王丽娜. 漫溃堤洪水联算全二维水动力模型及应用[J]. 水科学进展, 2015, 26(1):83-90.
    NEAL J C, FEWTRELL T J, BATES P D, et al. A comparison of three parallelisation methods for 2D flood inundation models[J]. Environmental Modelling & Software, 2010, 25(4):398-411.
    SHARMA A K, LOCKE B R, FINNEY W C. A preliminary study of pulsed streamer corona discharge for the degradation of phenolin aqueous solutions[J]. Hazardous Waste and Hazardous Material,1993,10(2):209-219.
    LACASTA A, MORALES-HERNáNDEZ, M, MURILLO J, et al. An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes[J]. Advances in Engineering Software, 2014, 78:1-15.
    赵旭东, 赵杨, 孙家文, 等. 基于GPU加速的潮流模型及其在岛群二维水动力数值模拟中的应用[J]. 海洋环境科学, 2017, 36(5):781-790.
    LIANG Q H, SMITH L S. A high-performance integrated hydrodynamic modelling system for urban flood simulations[J]. Journal of Hydroinformatics, 2015, 17(4):518-533.
    侯精明, 王润, 李国栋, 等. 基于动力波法的高效高尺度城市雨洪过程数值模型[J]. 水力发电学报, 2018, 37(3):40-49.
    李东来, 侯精明, 王新宏, 等. 河床冲淤对洪水演进影响数值模拟研究[J].泥沙研究,2018,43(5):13-20.
    侯精明, 李桂伊, 李国栋, 等. 高效高精度水动力模型在洪水演进中的应用研究[J]. 水力发电学报, 2018, 37(2):96-107.
    刘菲菲, 侯精明, 郭凯华, 等. 基于全水动力模型的流域雨洪过程数值模拟[J]. 水动力学研究与进展(A辑), 2018, 33(6):778-785.
    HOU J M, LIANG Q H, SIMONS F, et al. A stable 2D unstructured shallow flow model for simulations of wetting and drying over rough terrains[J]. Computers & Fluids, 2013, 82(17):132-147.
    YU C S, DUAN J. Two-dimensional depth-averaged finite volume model for unsteady turbulent flow[J]. Journal of Hydraulic Research, 2012, 50(6):599-611.
    SIVAKUMAR P, HYAMS D G, TAYLOR L K, et al. A primitive-variable Riemann method for solution of the shallow water equations with wetting and drying[J]. Journal of Computational Physics, 2009, 228(19):7452-7472.
    HOU J M, LIANG Q H, SIMONS F, et al. A 2D well-balanced shallow flow model for unstructured grids with novel slope source term treatment[J]. Advances in Water Resources, 2013, 52(2):107-131.
    LIANG Q H, MARCHE F. Numerical resolution of well-balanced shallow water equations with complex source terms[J]. Advances in Water Resources, 2009, 32(6):873-884.
    HUBBARD M E. Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids[J]. Journal of Computational Physics, 1999, 155(1):54-74.
    侯精明, 李东来, 王小军, 等. 建筑小区尺度下LID措施前期条件对径流调控效果影响模拟[J]. 水科学进展, 2019, 30(1):45-55.
    侯精明, 郭凯华, 王志力, 等. 设计暴雨雨型对城市内涝影响数值模拟[J]. 水科学进展, 2017, 28(6):820-828.
  • Relative Articles

    [1]LI Haicheng, CHENG Cheng, CHEN Zhenglin, YANG Lixia, LUO Shenglian. SULFIDE ION DOPING PROMOTES EFFICIENT PHOTOCATALYTIC DEGRADATION OF TOLUENE BY WO3 NANOWIRES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 201-210. doi: 10.13205/j.hjgc.202409019
    [2]FEI Bo, ZHANG Gangfeng, BU Mengya, LI Xiangdong. ADSORPTION AND DESORPTION PERFORMANCE OF HONEYCOMB ACTIVATED CARBON AND ZEOLITE MOLECULAR SIEVE FOR VOCs EXHAUST GAS FROM COATING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 90-96. doi: 10.13205/j.hjgc.202303012
    [3]WANG Xiaoyan, LIANG Meisheng, ZHANG Tong, CHEN Xi, LI Long. IN-SITU PREPARATION OF Cu/Al MODIFIED MCM-41 MOLECULAR SIEVE CATALYST AND ITS DEOXYGENATION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 192-200. doi: 10.13205/j.hjgc.202307026
    [4]QIU Fuguo, XIA Xin, WANG Xiaoqian, LÜ Huadong. Hg(Ⅱ) ADSORPTION PERFORMANCE BY WATER TREATMENT RESIDUAL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 34-41. doi: 10.13205/j.hjgc.202303005
    [5]NING Lianchao, HAN Yaxin, LI Qunxing, LIU Zihan, ZHANG Ming. PREPARATION OF ADSORPTION MATERIAL FOR OIL-WATER SEPARATION FROM MODIFIED ABANDONED MASKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 172-178. doi: 10.13205/j.hjgc.202303023
    [6]WANG Ziting, ZOU Jiawei, ZHOU Jiti, JIN Ruofei. PREPARATION OF GOETHITE-MODIFIED BIOCHAR AND ITS ADSORPTION CAPACITY ON Cr(Ⅵ)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 98-104. doi: 10.13205/j.hjgc.202211014
    [7]YANG De-yu, HAO Qing-lan, ZHAO Chen-chen, YAN Ning-na, DOU Bao-juan. CATALYTIC DEGRADATION PERFORMANCE OF TOLUENE OVER CuxMn1-xCe0.75Zr0.25Oy[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 96-100. doi: 10.13205/j.hjgc.202101014
    [8]WANG Yu-hang, YU Wei, ZHAO Si-yu, LIU Shan, JIANG Xiao-hui, LI Qi. ADSORPTION OF ANTIBIOTIC DRUGS IN WATER ENVIRONMENT BY MODIFIED BIOCHAR:A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 91-99,134. doi: 10.13205/j.hjgc.202112014
    [9]ZHANG Kai, YANG Shi-chao, LUO Min, WU Yan-heng, YU Su-ying. PREPARATION OF NANO-SHEET ZSM-5 ZEOLITE AND ITS ADSORPTION PROPERTIES FOR INDOOR ENVIRONMENT VOCs[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 60-64,74. doi: 10.13205/j.hjgc.202001009
    [14]Zhang Qingle Dong Jian Zhang Liqing Wang Jixiang Li Zejiao Li Rui, . ADSORPTION CHARACTERISTICS OF HEXAVALENT CHROMIUM ON POPLAR LEAF MODIFIED BY OXALATE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 64-69. doi: 10.13205/j.hjgc.201505014
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.4 %FULLTEXT: 15.4 %META: 82.6 %META: 82.6 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.7 %其他: 16.7 %上海: 1.0 %上海: 1.0 %东莞: 1.0 %东莞: 1.0 %临汾: 0.3 %临汾: 0.3 %佛山: 1.0 %佛山: 1.0 %保定: 0.3 %保定: 0.3 %北京: 8.2 %北京: 8.2 %十堰: 0.3 %十堰: 0.3 %南京: 1.6 %南京: 1.6 %南昌: 0.7 %南昌: 0.7 %南通: 0.7 %南通: 0.7 %厦门: 0.7 %厦门: 0.7 %台州: 0.3 %台州: 0.3 %合肥: 1.0 %合肥: 1.0 %喀什: 0.3 %喀什: 0.3 %大同: 0.3 %大同: 0.3 %天津: 1.6 %天津: 1.6 %太原: 0.3 %太原: 0.3 %安康: 0.3 %安康: 0.3 %安顺: 0.3 %安顺: 0.3 %宜春: 0.3 %宜春: 0.3 %宣城: 0.3 %宣城: 0.3 %常德: 1.3 %常德: 1.3 %张家口: 0.3 %张家口: 0.3 %成都: 1.6 %成都: 1.6 %扬州: 1.6 %扬州: 1.6 %昆明: 1.6 %昆明: 1.6 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.3 %朝阳: 0.3 %杭州: 2.3 %杭州: 2.3 %桂林: 1.0 %桂林: 1.0 %武汉: 2.0 %武汉: 2.0 %泽西: 0.3 %泽西: 0.3 %淄博: 0.3 %淄博: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.3 %温州: 0.3 %湖州: 0.7 %湖州: 0.7 %漯河: 4.3 %漯河: 4.3 %焦作: 0.3 %焦作: 0.3 %石家庄: 0.3 %石家庄: 0.3 %福州: 1.0 %福州: 1.0 %芒廷维尤: 17.0 %芒廷维尤: 17.0 %芝加哥: 3.0 %芝加哥: 3.0 %葫芦岛: 0.3 %葫芦岛: 0.3 %衢州: 0.7 %衢州: 0.7 %西宁: 12.8 %西宁: 12.8 %西安: 0.3 %西安: 0.3 %贵阳: 1.3 %贵阳: 1.3 %运城: 1.6 %运城: 1.6 %遵义: 0.3 %遵义: 0.3 %郑州: 1.6 %郑州: 1.6 %重庆: 0.3 %重庆: 0.3 %长沙: 2.0 %长沙: 2.0 %长治: 0.3 %长治: 0.3 %其他上海东莞临汾佛山保定北京十堰南京南昌南通厦门台州合肥喀什大同天津太原安康安顺宜春宣城常德张家口成都扬州昆明晋城朝阳杭州桂林武汉泽西淄博深圳温州湖州漯河焦作石家庄福州芒廷维尤芝加哥葫芦岛衢州西宁西安贵阳运城遵义郑州重庆长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (171) PDF downloads(7) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return