Citation: | WANG Lei, ZHAN Han-hui, WANG Qing-qing, WU Gang. RESEARCH PROGRESS OF INFLUENCE PARAMETERS AND METHODS FOR RAPIDLY CULTIVATING AEROBIC GRANULAR SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 1-7,29. doi: 10.13205/j.hjgc.202005001 |
ROLLEMBERG S L D S, BARROS A R M, FIRMINO P I M, et al. Aerobic granular sludge: cultivation parameters and removal mechanisms[J]. Bioresource Technology, 2018,130: 1-11.
|
PRONK M, de KREUK M K, de BRUIN B, et al. Full scale performance of the aerobic granular sludge process for sewage treatment[J]. Water Research, 2015, 84: 207-217.
|
SARMA S J, TAY J H, CHU A. Finding knowledge gaps in aerobic granulation technology[J]. Trends in Biotechnology, 2017, 35(1): 66-78.
|
RICKARD A H, GILBERT P, HIGH N J, et al. Bacterial coaggregation: an integral process in the development of multi-species biofilms[J]. Trends in Microbiology, 2003, 11(2): 94-100.
|
NANCHARAIAH Y V, KIRAN KUMAR REDDY G. Aerobic granular sludge technology: mechanisms of granulation and biotechnological applications[J]. Bioresource Technology, 2018, 247: 1128-1143.
|
LIU Y, TAY J H. State of the art of biogranulation technology for wastewater treatment[J]. Biotechnology Advances, 2004, 22(7): 533-563.
|
LEE D J, CHEN Y Y, SHOW K Y, et al. Advances in aerobic granule formation and granule stability in the course of storage and reactor operation[J]. Biotechnology Advances, 2010, 28(6): 919-934.
|
FRANCA R D G, PINHEIRO H M, VAN LOOSDRECHT M C M, et al. Stability of aerobic granules during long-term bioreactor operation[J]. Biotechnology Advances, 2018, 36(1): 228-246.
|
ZITA A, HERMANSSON M. Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ[J]. FEMS Microbiology Letters, 1997, 152(2): 299-306.
|
BEUN J J, HENDRIKS A. Aerobic granulation in a sequencing batch reactor[J]. Water Research, 1999, 33(10):2283-2290.
|
WILÉN B M, GAPES D, KELLER J. Determination of external and internal mass transfer limitation in nitrifying microbial aggregates[J]. Biotechnology and Bioengineering, 2004, 86(4): 445-457.
|
ADAV S S, LEE D J, LAI J Y. Potential cause of aerobic granular sludge breakdown at high organic loading rates[J]. Applied Microbiology and Biotechnology, 2010, 85(5): 1601-1610.
|
YANG S F, LI X Y, YU H Q. Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions[J]. Process Biochemistry, 2008, 43(1): 8-14.
|
张子健,吴伟伟,王建龙. 全自养硝化污泥的颗粒化过程研究[J].环境科学.2010,31(1):140-146.
|
LIU Y Q, MOY B, KONG Y H, et al. Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment[J]. Enzyme and Microbial Technology, 2010, 46(6): 520-525.
|
HAMZA R A, IORHEMEN O T, ZAGHLOUL M S, et al. Rapid formation and characterization of aerobic granules in pilot-scale sequential batch reactor for high-strength organic wastewater treatment[J]. Journal of Water Process Engineering, 2018, 22: 27-33.
|
CHEN Y, JIANG W J, LIANG D T, et al. Aerobic granulation under the combined hydraulic and loading selection pressures[J]. Bioresource Technology, 2008, 99(16): 7444-7449.
|
ZHANG Z M, QIU J X, XIANG R H, et al. Organic loading rate (OLR) regulation for enhancement of aerobic sludge granulation: Role of key microorganism and their function[J]. Science of the Total Environment, 2019, 653: 630-637.
|
LIU Y Q, TAY J H. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate[J]. Water Research, 2015, 80: 256-266.
|
FRANCA R D G, ORTIGUEIRA J, PINHEIRO H M, et al. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater[J]. Water Science and Technology, 2017, 76(5): 1188-1195.
|
MOY B Y P, TAY J H, TOH S K, et al. High organic loading influences the physical characteristics of aerobic sludge granules[J]. Letters in Applied Microbiology, 2002, 34(6): 407-412.
|
WOSMAN A, LU Y, SUN S, et al. Effect of operational strategies on activated sludge’s acclimation to phenol, subsequent aerobic granulation, and accumulation of polyhydoxyalkanoates[J]. Journal of Hazardous Materials, 2016, 317: 221-228.
|
HE Q L, ZHANG W, ZHANG S L, et al. Enanced nitrogen removal in an aerobic granular sequencing batch reactor performing simultaneous nitrification, endogenous denitrification and phosphorus removal with low superficial gas velocity[J]. Chemical Engineering Journal, 2017, 326: 1223-1231.
|
LI A J, LI X Y, YU H Q. Effect of the food-to-microorganism (F/M) ratio on the formation and size of aerobic sludge granules[J]. Process Biochemistry, 2011, 46(12): 2269-2276.
|
ZHOU J H, ZHANG Z M, ZHAO H, et al. Optimizing granules size distribution for aerobic granular sludge stability: effect of a novel funnel-shaped internals on hydraulic shear stress[J]. Bioresource Technology, 2016, 216: 562-570.
|
DEVLIN T R, DI BIASE A, KOWALSKI M, et al. Granulation of activated sludge under low hydrodynamic shear and different wastewater characteristics[J]. Bioresource Technology, 2017, 224: 229-235.
|
TAY J H, LIU Q S, LIU Y. The effects of shear force on the formation, structure and metabolism of aerobic granules[J]. Applied Microbiology and Biotechnology, 2001, 57(1/2): 227-233.
|
CHEN Y, JIANG W J, LIANG D T, et al. Structure and stability of aerobic granules cultivated under different shear force in sequencing batch reactors[J]. Applied Microbiology and Biotechnology, 2007, 76(5): 1199-1208.
|
LONG B, YANG C Z, PU W H, et al. Rapid cultivation of aerobic granule for the treatment of solvent recovery raffinate in a bench scale sequencing batch reactor[J]. Separation and Purification Technology, 2016, 160: 1-10.
|
LIU Y, TAY J. The essential role of hydrodynamic shear force in the formation of biofilm and granula sluge[J]. Water Research, 2002, 36(7): 1653-1665.
|
QIN L, TAY J H, LIU Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors[J]. Process Biochemistry, 2004, 39(5): 579-584.
|
LIU Y Q, TAY J H. Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors[J]. Bioresource Technology, 2008, 99(5): 980-985.
|
WANG Z W, LIU Y, TAY J H. Distribution of EPS and cell surface hydrophobicity in aerobic granules[J]. Applied Microbiology and Biotechnology, 2005, 69(4): 469-473.
|
WANG X F, OEHMEN A, FREITAS E B, et al. The link of feast-phase dissolved oxygen (DO) with substrate competition and microbial selection in PHA production[J]. Water Research, 2017, 112: 269-278.
|
LÓPEZ-PALAU S, PINTO A, BASSET N, et al. ORP slope and feast-famine strategy as the basis of the control of a granular sequencing batch reactor treating winery wastewater[J]. Biochemical Engineering Journal, 2012, 68: 190-198.
|
ADAV S S, LEE D J, SHOW K Y, et al. Aerobic granular sludge: recent advances[J]. Biotechnology Advances, 2008, 26(5): 411-423.
|
CORSINO S F, CAMPO R, DI BELLA G, et al. Cultivation of granular sludge with hypersaline oily wastewater[J]. International Biodeterioration and Biodegradation, 2015, 105: 192-202.
|
HU L L, WANG J L, WEN X H, et al. The formation and characteristics of aerobic granules in sequencing batch reactor (SBR) by seeding anaerobic granules[J]. Process Biochemistry, 2005, 40(1): 5-11.
|
PIJUAN M, WERNER U, YUAN Z G. Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules[J]. Water Research, 2011, 45(16): 5075-5083.
|
LONG B, YANG C Z, PU W H, et al. Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch reactor[J]. Bioresource Technology, 2014, 166: 57-63.
|
HE Q L, CHEN L, ZHANG S J, et al. Natural sunlight induced rapid formation of water-born algal-bacterial granules in an aerobic bacterial granular photo-sequencing batch reactor[J]. Journal of Hazardous Materials, 2018, 359: 222-230.
|
VERAWATY M, PIJUAN M, YUAN Z, et al. Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment[J]. Water Research, 2012, 46(3): 761-771.
|
王良杰,湛含辉,孙璨. 以脱水污泥为接种污泥促进好氧污泥颗粒化[J].中国环境科学2016,36(11):3405-3411.
|
MORAIS I L H, SILVA C M, ZANUNCIO J C, et al. Structural stabilization of granular sludge by addition of calcium ions into aerobic bioreactors[J]. Bioresources, 2018, 13(1): 176-191.
|
BASSIN J P, PRONK M, MUYZER G, et al. Effect of elevated salt concentrations on the aerobic granular sludge process: linking microbial activity with microbial community structure[J]. Applied and Environmental Microbiology, 2011, 77(22): 7942-7953.
|
TAHERI E, KHIADANI HAJIAN M H, AMIN M M, et al. Treatment of saline wastewater by a sequencing batch reactor with emphasis on aerobic granule formation[J]. Bioresource Technology, 2012, 111: 21-26.
|
SAJJAD M, KIM K S. Studies on the interactions of Ca2+ and Mg2+ with EPS and their role in determining the physicochemical characteristics of granular sludges in SBR system[J]. Process Biochemistry, 2015, 50(6): 966-972.
|
LI X L, LUO J H, GUO G, et al. Seawater-based wastewater accelerates development of aerobic granular sludge: a laboratory proof-of-concept[J]. Water Research, 2017, 115: 210-219.
|
LIU J, LI J, WANG X D, et al. Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP[J]. Journal of Environmental Sciences, 2017, 51: 332-341.
|
KONG Q, NGO H H, SHU L, et al. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor[J]. Journal of Hazardous Materials, 2014, 279: 511-517.
|
HAO W, LI Y C, LV J P, et al. The biological effect of metal ions on the granulation of aerobic granular activated sludge[J]. Journal of Environmental Sciences (China), 2016, 44: 252-259.
|
LIU Z, LIU Y J, ZHANG A N, et al. Study on the process of aerobic granule sludge rapid formation by using the poly aluminum chloride (PAC)[J]. Chemical Engineering Journal, 2014, 250: 319-325.
|
LIANG J, LI W, ZHANG H L, et al. Coaggregation mechanism of pyridine-degrading strains for the acceleration of the aerobic granulation process[J]. Chemical Engineering Journal, 2018, 338: 176-183.
|
JIANG H L, TAY J H, MASZENAN A M, et al. Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains[J]. Environmental Science and Technology, 2006, 40(19): 6137-6142.
|
IVANOV V, WANG X H, STABNIKOVA O. Starter culture of Pseudomonas veronii strain B for aerobic granulation[J]. World Journal of Microbiology and Biotechnology, 2008, 24(4): 533-539.
|
LI A J, LI X Y, YU H Q, et al. Granular activated carbon for aerobic sludge granulation in a bioreactor with a low-strength wastewater influent[J]. Separation and Purification Technology, 2011, 80(2): 276-283.
|
ZHOU J H, ZHAO H, HU M, et al. Granular activated carbon as nucleating agent for aerobic sludge granulation: effect of GAC size on velocity field differences (GAC versus flocs) and aggregation behavior[J]. Bioresource Technology, 2015, 198: 358-363.
|
TAO J, QIN L, LIU X Y, et al. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism[J]. Bioresource Technology, 2017, 236: 60-67.
|
ZHANG D J, LI W, HOU C, et al. Aerobic granulation accelerated by biochar for the treatment of refractory wastewater[J]. Chemical Engineering Journal, 2017, 314: 88-97.
|
SUN H Y, CHEN S P, LIU J Y, et al. Role of layered double hydroxide in improving the stability of aerobic granular sludge[J]. Clean-Soil Air Water, 2017, 45(4): 2-8.
|
WANG G W, WANG D, XU X C, et al. Partial nitrifying granule stimulated by struvite carrier in treating pharmaceutical wastewater[J]. Applied Microbiology and Biotechnology, 2013, 97(19): 8757-8765.
|
1. | 韦必颖,成建梅,苏晓煜,程天舜. 深圳市2015~2021年雨源型河流水质时空变化及其对降雨的响应. 环境科学. 2024(02): 780-791 . ![]() | |
2. | 张文博,余香英,薛弘涛,刘晋涛,蒋婧媛,熊津晶. 基于APCS-MLR模型的九洲江广东段不同水期水质变化特征及污染来源解析. 农业环境科学学报. 2024(02): 401-410 . ![]() | |
3. | 刘菲,李翀,聂中林,黄适尔,徐赫姝,吴涵,陈亚松,张驰,齐维晓. 污水厂尾水对受纳水体中消毒副产物(DBPs)时空分布特征的影响. 环境科学学报. 2024(03): 105-116 . ![]() | |
4. | 周游,冯芳,金爽,任佳慧,史千年. 京杭大运河水质时空分布特征及驱动因素. 环境科学学报. 2024(06): 174-184 . ![]() | |
5. | 叶方琪,计勇,惠源,章晨晖,成玉祥. 基于3种水质指数方法的鄱阳湖五河水质分析与评价. 人民珠江. 2024(07): 84-91 . ![]() | |
6. | 高雯媛,邹霖,朱俊毅,肖童觉,于奕,沈健林. 湖南省地表水水质时空变化特征及驱动因子分析. 环境工程. 2024(08): 17-24 . ![]() | |
7. | 耿姣,王洋,胡术刚,魏岩洁,孙菲,袁鹏. 基于WQI的平原河网地区河流水质评价与时空变化分析. 环境工程. 2023(06): 187-193+209 . ![]() | |
8. | 杨长明,尉岚,杨阳,王育来. 污水厂尾水补水对受纳水体氮磷形态与DOM时空分布特征的影响. 环境科学研究. 2023(09): 1705-1715 . ![]() | |
9. | 刘文强,郁达伟,李昆,郑利兵,朱利英,桂双林,魏源送. 降雨特征对赣江南昌段河流断面不同水期的水质影响分析. 环境工程. 2023(08): 91-99 . ![]() | |
10. | 程敏. 农业面源污染对农村地表水的影响与对策. 化工设计通讯. 2023(12): 185-187 . ![]() | |
11. | 陈振宇,闫祯,师艳丽,平令文. 河流污染物空间分布及污染源分析. 水利技术监督. 2022(02): 176-181 . ![]() | |
12. | 王刚,沃玉报,毛劲乔,肖洋,彭吉荣. 基于两步聚类的城市闸控河流水质时空变异特征研究. 环境工程. 2022(01): 117-122+160 . ![]() | |
13. | 白景锋,王缘圆. 南水北调中线河南段水质时空变化及影响因素. 河南水利与南水北调. 2022(10): 41-43 . ![]() | |
14. | 吴东少,高伟,陈岩,张远. 基于改进LAM模型的河流污染源解析方法与例证. 环境科学学报. 2022(12): 376-383 . ![]() | |
15. | 饶梦,伊学农. 祊河流域水质时空变化特征. 中国水运(下半月). 2022(10): 64-66+69 . ![]() | |
16. | 饶梦,伊学农. 祊河流域水质时空变化特征. 中国水运. 2022(20): 64-66+69 . ![]() | |
17. | 李璐汐,孟玉川,谢姝,蒋芳婷,宋泓苇. 基于不同评价方法的猴子岩水电站水质研究. 环境科学与技术. 2021(S2): 299-307 . ![]() |