Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Yu Changwu Gao Chao Wang Lin, . ADSORPTION PERFORMANCE OF MOLYBDENUM ONTO HUMUS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 10-14. doi: 10.13205/j.hjgc.201506003
Citation: WANG Lei, ZHAN Han-hui, WANG Qing-qing, WU Gang. RESEARCH PROGRESS OF INFLUENCE PARAMETERS AND METHODS FOR RAPIDLY CULTIVATING AEROBIC GRANULAR SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 1-7,29. doi: 10.13205/j.hjgc.202005001

RESEARCH PROGRESS OF INFLUENCE PARAMETERS AND METHODS FOR RAPIDLY CULTIVATING AEROBIC GRANULAR SLUDGE

doi: 10.13205/j.hjgc.202005001
  • Received Date: 2019-12-28
  • In order to solve the problem of long start-up period of the aerobic granular sludge system, the paper reviewed the forming mechanism, the main affecting factors and the methods to promote aerobic granulation. It was found that inducing microbes to secrete more extracellular polymer (EPS) could promote the rapid formation of initial microbial aggregates, and thus decreased the aerobic granulation time by adjusting the parameters of hydraulic shear force, settling time, organic load and starvation stage of the reactors. Therefore, the current measures of rapid granulation was essentially based on the method of inducing the rapidly forming initial microbe aggregates or directly adding aggregates, to realize the shortening of the time for aerobic granulation. Finally, this paper pointed out the problems existing in the rapid cultivation of aerobic granule, and the key to solve the related problems, and the future research focus is to clarify the formation mechanism of aerobic granule sludge, establish the standard of aerobic granulation and the cultivation indexes system.
  • ROLLEMBERG S L D S, BARROS A R M, FIRMINO P I M, et al. Aerobic granular sludge: cultivation parameters and removal mechanisms[J]. Bioresource Technology, 2018,130: 1-11.
    PRONK M, de KREUK M K, de BRUIN B, et al. Full scale performance of the aerobic granular sludge process for sewage treatment[J]. Water Research, 2015, 84: 207-217.
    SARMA S J, TAY J H, CHU A. Finding knowledge gaps in aerobic granulation technology[J]. Trends in Biotechnology, 2017, 35(1): 66-78.
    RICKARD A H, GILBERT P, HIGH N J, et al. Bacterial coaggregation: an integral process in the development of multi-species biofilms[J]. Trends in Microbiology, 2003, 11(2): 94-100.
    NANCHARAIAH Y V, KIRAN KUMAR REDDY G. Aerobic granular sludge technology: mechanisms of granulation and biotechnological applications[J]. Bioresource Technology, 2018, 247: 1128-1143.
    LIU Y, TAY J H. State of the art of biogranulation technology for wastewater treatment[J]. Biotechnology Advances, 2004, 22(7): 533-563.
    LEE D J, CHEN Y Y, SHOW K Y, et al. Advances in aerobic granule formation and granule stability in the course of storage and reactor operation[J]. Biotechnology Advances, 2010, 28(6): 919-934.
    FRANCA R D G, PINHEIRO H M, VAN LOOSDRECHT M C M, et al. Stability of aerobic granules during long-term bioreactor operation[J]. Biotechnology Advances, 2018, 36(1): 228-246.
    ZITA A, HERMANSSON M. Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ[J]. FEMS Microbiology Letters, 1997, 152(2): 299-306.
    BEUN J J, HENDRIKS A. Aerobic granulation in a sequencing batch reactor[J]. Water Research, 1999, 33(10):2283-2290.
    WILÉN B M, GAPES D, KELLER J. Determination of external and internal mass transfer limitation in nitrifying microbial aggregates[J]. Biotechnology and Bioengineering, 2004, 86(4): 445-457.
    ADAV S S, LEE D J, LAI J Y. Potential cause of aerobic granular sludge breakdown at high organic loading rates[J]. Applied Microbiology and Biotechnology, 2010, 85(5): 1601-1610.
    YANG S F, LI X Y, YU H Q. Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions[J]. Process Biochemistry, 2008, 43(1): 8-14.
    张子健,吴伟伟,王建龙. 全自养硝化污泥的颗粒化过程研究[J].环境科学.2010,31(1):140-146.
    LIU Y Q, MOY B, KONG Y H, et al. Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment[J]. Enzyme and Microbial Technology, 2010, 46(6): 520-525.
    HAMZA R A, IORHEMEN O T, ZAGHLOUL M S, et al. Rapid formation and characterization of aerobic granules in pilot-scale sequential batch reactor for high-strength organic wastewater treatment[J]. Journal of Water Process Engineering, 2018, 22: 27-33.
    CHEN Y, JIANG W J, LIANG D T, et al. Aerobic granulation under the combined hydraulic and loading selection pressures[J]. Bioresource Technology, 2008, 99(16): 7444-7449.
    ZHANG Z M, QIU J X, XIANG R H, et al. Organic loading rate (OLR) regulation for enhancement of aerobic sludge granulation: Role of key microorganism and their function[J]. Science of the Total Environment, 2019, 653: 630-637.
    LIU Y Q, TAY J H. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate[J]. Water Research, 2015, 80: 256-266.
    FRANCA R D G, ORTIGUEIRA J, PINHEIRO H M, et al. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater[J]. Water Science and Technology, 2017, 76(5): 1188-1195.
    MOY B Y P, TAY J H, TOH S K, et al. High organic loading influences the physical characteristics of aerobic sludge granules[J]. Letters in Applied Microbiology, 2002, 34(6): 407-412.
    WOSMAN A, LU Y, SUN S, et al. Effect of operational strategies on activated sludge’s acclimation to phenol, subsequent aerobic granulation, and accumulation of polyhydoxyalkanoates[J]. Journal of Hazardous Materials, 2016, 317: 221-228.
    HE Q L, ZHANG W, ZHANG S L, et al. Enanced nitrogen removal in an aerobic granular sequencing batch reactor performing simultaneous nitrification, endogenous denitrification and phosphorus removal with low superficial gas velocity[J]. Chemical Engineering Journal, 2017, 326: 1223-1231.
    LI A J, LI X Y, YU H Q. Effect of the food-to-microorganism (F/M) ratio on the formation and size of aerobic sludge granules[J]. Process Biochemistry, 2011, 46(12): 2269-2276.
    ZHOU J H, ZHANG Z M, ZHAO H, et al. Optimizing granules size distribution for aerobic granular sludge stability: effect of a novel funnel-shaped internals on hydraulic shear stress[J]. Bioresource Technology, 2016, 216: 562-570.
    DEVLIN T R, DI BIASE A, KOWALSKI M, et al. Granulation of activated sludge under low hydrodynamic shear and different wastewater characteristics[J]. Bioresource Technology, 2017, 224: 229-235.
    TAY J H, LIU Q S, LIU Y. The effects of shear force on the formation, structure and metabolism of aerobic granules[J]. Applied Microbiology and Biotechnology, 2001, 57(1/2): 227-233.
    CHEN Y, JIANG W J, LIANG D T, et al. Structure and stability of aerobic granules cultivated under different shear force in sequencing batch reactors[J]. Applied Microbiology and Biotechnology, 2007, 76(5): 1199-1208.
    LONG B, YANG C Z, PU W H, et al. Rapid cultivation of aerobic granule for the treatment of solvent recovery raffinate in a bench scale sequencing batch reactor[J]. Separation and Purification Technology, 2016, 160: 1-10.
    LIU Y, TAY J. The essential role of hydrodynamic shear force in the formation of biofilm and granula sluge[J]. Water Research, 2002, 36(7): 1653-1665.
    QIN L, TAY J H, LIU Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors[J]. Process Biochemistry, 2004, 39(5): 579-584.
    LIU Y Q, TAY J H. Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors[J]. Bioresource Technology, 2008, 99(5): 980-985.
    WANG Z W, LIU Y, TAY J H. Distribution of EPS and cell surface hydrophobicity in aerobic granules[J]. Applied Microbiology and Biotechnology, 2005, 69(4): 469-473.
    WANG X F, OEHMEN A, FREITAS E B, et al. The link of feast-phase dissolved oxygen (DO) with substrate competition and microbial selection in PHA production[J]. Water Research, 2017, 112: 269-278.
    LÓPEZ-PALAU S, PINTO A, BASSET N, et al. ORP slope and feast-famine strategy as the basis of the control of a granular sequencing batch reactor treating winery wastewater[J]. Biochemical Engineering Journal, 2012, 68: 190-198.
    ADAV S S, LEE D J, SHOW K Y, et al. Aerobic granular sludge: recent advances[J]. Biotechnology Advances, 2008, 26(5): 411-423.
    CORSINO S F, CAMPO R, DI BELLA G, et al. Cultivation of granular sludge with hypersaline oily wastewater[J]. International Biodeterioration and Biodegradation, 2015, 105: 192-202.
    HU L L, WANG J L, WEN X H, et al. The formation and characteristics of aerobic granules in sequencing batch reactor (SBR) by seeding anaerobic granules[J]. Process Biochemistry, 2005, 40(1): 5-11.
    PIJUAN M, WERNER U, YUAN Z G. Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules[J]. Water Research, 2011, 45(16): 5075-5083.
    LONG B, YANG C Z, PU W H, et al. Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch reactor[J]. Bioresource Technology, 2014, 166: 57-63.
    HE Q L, CHEN L, ZHANG S J, et al. Natural sunlight induced rapid formation of water-born algal-bacterial granules in an aerobic bacterial granular photo-sequencing batch reactor[J]. Journal of Hazardous Materials, 2018, 359: 222-230.
    VERAWATY M, PIJUAN M, YUAN Z, et al. Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment[J]. Water Research, 2012, 46(3): 761-771.
    王良杰,湛含辉,孙璨. 以脱水污泥为接种污泥促进好氧污泥颗粒化[J].中国环境科学2016,36(11):3405-3411.
    MORAIS I L H, SILVA C M, ZANUNCIO J C, et al. Structural stabilization of granular sludge by addition of calcium ions into aerobic bioreactors[J]. Bioresources, 2018, 13(1): 176-191.
    BASSIN J P, PRONK M, MUYZER G, et al. Effect of elevated salt concentrations on the aerobic granular sludge process: linking microbial activity with microbial community structure[J]. Applied and Environmental Microbiology, 2011, 77(22): 7942-7953.
    TAHERI E, KHIADANI HAJIAN M H, AMIN M M, et al. Treatment of saline wastewater by a sequencing batch reactor with emphasis on aerobic granule formation[J]. Bioresource Technology, 2012, 111: 21-26.
    SAJJAD M, KIM K S. Studies on the interactions of Ca2+ and Mg2+ with EPS and their role in determining the physicochemical characteristics of granular sludges in SBR system[J]. Process Biochemistry, 2015, 50(6): 966-972.
    LI X L, LUO J H, GUO G, et al. Seawater-based wastewater accelerates development of aerobic granular sludge: a laboratory proof-of-concept[J]. Water Research, 2017, 115: 210-219.
    LIU J, LI J, WANG X D, et al. Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP[J]. Journal of Environmental Sciences, 2017, 51: 332-341.
    KONG Q, NGO H H, SHU L, et al. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor[J]. Journal of Hazardous Materials, 2014, 279: 511-517.
    HAO W, LI Y C, LV J P, et al. The biological effect of metal ions on the granulation of aerobic granular activated sludge[J]. Journal of Environmental Sciences (China), 2016, 44: 252-259.
    LIU Z, LIU Y J, ZHANG A N, et al. Study on the process of aerobic granule sludge rapid formation by using the poly aluminum chloride (PAC)[J]. Chemical Engineering Journal, 2014, 250: 319-325.
    LIANG J, LI W, ZHANG H L, et al. Coaggregation mechanism of pyridine-degrading strains for the acceleration of the aerobic granulation process[J]. Chemical Engineering Journal, 2018, 338: 176-183.
    JIANG H L, TAY J H, MASZENAN A M, et al. Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains[J]. Environmental Science and Technology, 2006, 40(19): 6137-6142.
    IVANOV V, WANG X H, STABNIKOVA O. Starter culture of Pseudomonas veronii strain B for aerobic granulation[J]. World Journal of Microbiology and Biotechnology, 2008, 24(4): 533-539.
    LI A J, LI X Y, YU H Q, et al. Granular activated carbon for aerobic sludge granulation in a bioreactor with a low-strength wastewater influent[J]. Separation and Purification Technology, 2011, 80(2): 276-283.
    ZHOU J H, ZHAO H, HU M, et al. Granular activated carbon as nucleating agent for aerobic sludge granulation: effect of GAC size on velocity field differences (GAC versus flocs) and aggregation behavior[J]. Bioresource Technology, 2015, 198: 358-363.
    TAO J, QIN L, LIU X Y, et al. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism[J]. Bioresource Technology, 2017, 236: 60-67.
    ZHANG D J, LI W, HOU C, et al. Aerobic granulation accelerated by biochar for the treatment of refractory wastewater[J]. Chemical Engineering Journal, 2017, 314: 88-97.
    SUN H Y, CHEN S P, LIU J Y, et al. Role of layered double hydroxide in improving the stability of aerobic granular sludge[J]. Clean-Soil Air Water, 2017, 45(4): 2-8.
    WANG G W, WANG D, XU X C, et al. Partial nitrifying granule stimulated by struvite carrier in treating pharmaceutical wastewater[J]. Applied Microbiology and Biotechnology, 2013, 97(19): 8757-8765.
  • Relative Articles

    [1]PAN Xia, YE Shufan, ZHENG Xiaocha, MA Tingting. PURIFICATION EFFECT OF FOUR PLANT COMBINATIONS ON COMBINED WATER POLLUTION OF EUTROPHICATION AND HEAVY METALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 69-75. doi: 10.13205/j.hjgc.202307010
    [2]QI Xiaoxue, ZHANG Chen, YU Jianghua. PREPARATION OF PUMICE BASED ON CONSTRUCTION WASTE AND ITS ADSORPTION PERFORMANCE ON HEAVY METALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 171-177. doi: 10.13205/j.hjgc.202208024
    [3]WU Yan-xia, LIANG Hai-long, CHEN Xin, CHEN Chen, WANG Xian-zhong, CHEN Yu-feng, DAI Chang-you, HU Li-ming. EFFECT OF ZrO2 DOPING ON DENITRIFICATION PERFORMANCE OF V2O5-MoO3/TiO2 CATALYSTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 107-112,119. doi: 10.13205/j.hjgc.202005019
    [4]ZHANG Yong-ping, WANG Gang, XU Min, SONG Xiao-san. PREPARATION OF MERCAPTOACETYL CORN STRAW, A Cd(Ⅱ) ADSORBENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 116-122. doi: 10.13205/j.hjgc.202003020
    [14]Liu Qian, Fu Lili, Sun Jiajun, Li Fengda, Jiang Binhui. SCREENING,CULTURING OF A STRAIN OF FLOCCULANT-PRODUCING BACTERIA AND REMOVAL OF HEAVY METALS FROM WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 63-66. doi: 10.13205/j.hjgc.201506014
    [15]Luo Ting, Jiang Zhenmao, Ren Zhijie, Zhou Meizhu, Zhou Hongguang. PREPARATION AND PERFORMANCE OF RESIN BASED NANOSCALE ZERO VALENT IRON COMPOSITES FOR REMOVAL OF Pb( Ⅱ) IN WATER SOLUTION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 1-4. doi: 10.13205/j.hjgc.201505001
    [16]Kang Haiyan Yang Zhiguang Huang Xiaonan, . REMOVAL OF HEAVY METALS USING NANOSCALE ZERO-VALENT IRON IMMOBILIZED BY SODIUM ALGINATE/β-CYCLODEXTRIN[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 144-147. doi: 10.13205/j.hjgc.201506032
    [17]Gu Chao Liang Longchao Chen Zhuo, . STUDY ON PHYTOREMEDIATION OF HEAVY METALS IN THE SEDIMENTS OF HONGFENG LAKE BY FOUR SPECIES OF PASTURE GRASS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 148-151?.
  • Cited by

    Periodical cited type(17)

    1. 韦必颖,成建梅,苏晓煜,程天舜. 深圳市2015~2021年雨源型河流水质时空变化及其对降雨的响应. 环境科学. 2024(02): 780-791 .
    2. 张文博,余香英,薛弘涛,刘晋涛,蒋婧媛,熊津晶. 基于APCS-MLR模型的九洲江广东段不同水期水质变化特征及污染来源解析. 农业环境科学学报. 2024(02): 401-410 .
    3. 刘菲,李翀,聂中林,黄适尔,徐赫姝,吴涵,陈亚松,张驰,齐维晓. 污水厂尾水对受纳水体中消毒副产物(DBPs)时空分布特征的影响. 环境科学学报. 2024(03): 105-116 .
    4. 周游,冯芳,金爽,任佳慧,史千年. 京杭大运河水质时空分布特征及驱动因素. 环境科学学报. 2024(06): 174-184 .
    5. 叶方琪,计勇,惠源,章晨晖,成玉祥. 基于3种水质指数方法的鄱阳湖五河水质分析与评价. 人民珠江. 2024(07): 84-91 .
    6. 高雯媛,邹霖,朱俊毅,肖童觉,于奕,沈健林. 湖南省地表水水质时空变化特征及驱动因子分析. 环境工程. 2024(08): 17-24 . 本站查看
    7. 耿姣,王洋,胡术刚,魏岩洁,孙菲,袁鹏. 基于WQI的平原河网地区河流水质评价与时空变化分析. 环境工程. 2023(06): 187-193+209 . 本站查看
    8. 杨长明,尉岚,杨阳,王育来. 污水厂尾水补水对受纳水体氮磷形态与DOM时空分布特征的影响. 环境科学研究. 2023(09): 1705-1715 .
    9. 刘文强,郁达伟,李昆,郑利兵,朱利英,桂双林,魏源送. 降雨特征对赣江南昌段河流断面不同水期的水质影响分析. 环境工程. 2023(08): 91-99 . 本站查看
    10. 程敏. 农业面源污染对农村地表水的影响与对策. 化工设计通讯. 2023(12): 185-187 .
    11. 陈振宇,闫祯,师艳丽,平令文. 河流污染物空间分布及污染源分析. 水利技术监督. 2022(02): 176-181 .
    12. 王刚,沃玉报,毛劲乔,肖洋,彭吉荣. 基于两步聚类的城市闸控河流水质时空变异特征研究. 环境工程. 2022(01): 117-122+160 . 本站查看
    13. 白景锋,王缘圆. 南水北调中线河南段水质时空变化及影响因素. 河南水利与南水北调. 2022(10): 41-43 .
    14. 吴东少,高伟,陈岩,张远. 基于改进LAM模型的河流污染源解析方法与例证. 环境科学学报. 2022(12): 376-383 .
    15. 饶梦,伊学农. 祊河流域水质时空变化特征. 中国水运(下半月). 2022(10): 64-66+69 .
    16. 饶梦,伊学农. 祊河流域水质时空变化特征. 中国水运. 2022(20): 64-66+69 .
    17. 李璐汐,孟玉川,谢姝,蒋芳婷,宋泓苇. 基于不同评价方法的猴子岩水电站水质研究. 环境科学与技术. 2021(S2): 299-307 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.1 %FULLTEXT: 25.1 %META: 74.9 %META: 74.9 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.0 %其他: 8.0 %China: 0.3 %China: 0.3 %上海: 0.3 %上海: 0.3 %北京: 2.1 %北京: 2.1 %南平: 0.6 %南平: 0.6 %厦门: 0.3 %厦门: 0.3 %台州: 5.0 %台州: 5.0 %成都: 0.6 %成都: 0.6 %扬州: 0.6 %扬州: 0.6 %无锡: 2.4 %无锡: 2.4 %杭州: 5.0 %杭州: 5.0 %沈阳: 2.4 %沈阳: 2.4 %温州: 0.3 %温州: 0.3 %漯河: 2.1 %漯河: 2.1 %濮阳: 0.6 %濮阳: 0.6 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 29.8 %芒廷维尤: 29.8 %苏州: 1.2 %苏州: 1.2 %莆田: 0.6 %莆田: 0.6 %莱芜: 0.3 %莱芜: 0.3 %衢州: 3.5 %衢州: 3.5 %西宁: 30.4 %西宁: 30.4 %达州: 0.3 %达州: 0.3 %重庆: 0.3 %重庆: 0.3 %钦州: 0.3 %钦州: 0.3 %阳泉: 2.7 %阳泉: 2.7 %其他China上海北京南平厦门台州成都扬州无锡杭州沈阳温州漯河濮阳绵阳芒廷维尤苏州莆田莱芜衢州西宁达州重庆钦州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (352) PDF downloads(26) Cited by(26)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return