Core Chinese Journal
Source Journal of CSCD(Core Version)
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 38 Issue 5
Aug.  2020
Turn off MathJax
Article Contents
LIU Er-yan, XUE Fei, XU Shi-hong, LI Deng-xin. EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 13-17,42. doi: 10.13205/j.hjgc.202005003
Citation: LIU Er-yan, XUE Fei, XU Shi-hong, LI Deng-xin. EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 13-17,42. doi: 10.13205/j.hjgc.202005003

EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE

doi: 10.13205/j.hjgc.202005003
  • Received Date: 2019-01-23
  • On the basis of a single factor study, capillary water absorption time (CST), sedimentation curve, scanning electron microscope (SEM), and three-dimensional fluorescence spectra of EPS in printing and dyeing sludge was explored, and the effect of microwave, lysozyme, microwave and lysozyme joint treatment on the dewatering of printing and dyeing sludge was compared. The sludge dewatering performance was characterized by orthogonal test, and the optimal conditions for the joint treatment were: the enzymolysis temperature was 40 ℃, the amount of lysozyme added was 0.09 g/g(TSS), the enzymolysis time was 3 h, the microwave power was 400 W, and the microwave time was 150 s. The single factor experiment results showed that: microwave (400 W, 180 s) and lysozyme (0.09 g/g(TSS), 40 ℃, 4 h) treatment could promote sludge cracking and dissolution of extracellular polymers; under those two conditions, the growth rate of dissolved polysaccharide and total proteins was 609% and 306% respectively; CST was decreased by 12.2% and 22.0%, respectively. At the same time, the joint treatment of microwave and lysozymes increased the dissolve polysaccharides and total proteins by 1353%, and decreased CST by 49.3%,and sludge sedimentation performance was the best then. SEM results showed: the combination of microwave and lysozyme made the structure of the sludge changed obviously. The sludge bacteria micelle was broken, the floc structure became loose, and the intracellular bound water was successfully converted into free water, which was beneficial to the sludge dehydration.
  • loading
  • LIU J J C. Control aniline pollutants from printing and dyeing industries[J]. China Environ. News, 2015(17): 55-56.
    QI Y, THAPA K B, HOADLEY A F A. Application of filtration aids for improving sludge dewatering properties: a review[J]. Chemical Engineering Journal, 2011, 171(2):373-384.
    SARAYU K, SANDHYA S. Current technologies for biological treatment of textile wastewater: a review[J]. Applied Biochemistry and Biotechnology, 2012, 167(3):645-661.
    RAJAGOPAL R, DANIEL I M, SINGH G. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143(17):632-641.
    CHEN Y G, YANG H Z, GU G W. Effect of acid and surfactant treatment on activated sludge dewatering and settling[J]. Water Research, 2001, 35(11):2615-2620.
    TONY M A, ZHAO Y Q, FU J F, et al. Conditioning of aluminium-based water treatment sludge with Fenton’s reagent: effectiveness and optimising study to improve dewaterability[J]. Chemosphere, 2008, 72(4):673-677.
    AHMADUN F R, MOLLA A H. Enhancement of bioseparation and dewaterability of domestic wastewater sludge by fungal treated dewatered sludge[J]. Journal of Hazardous Materials, 2007, 147(1/2):350-356.
    FENG X, DENG J C, LEI H Y, et al. Dewaterability of waste activated sludge with ultrasound conditioning[J]. Bioresource Technology, 2009, 100(3):1074-1081.
    ZHU Y P, LIU H B, FU B, et al. Effect of synergistically adding protease and EDTA-2Na on waste activated sludge hydrolysis[J]. Chinese Journal of Environmental Engineering, 2013, 7(8):3158-3164.
    PEI H Y, HU W R, LIU Q H. Effect of protease and cellulase on the characteristic of activated sludge[J]. Journal of Hazardous Materials, 2010, 178(1/2/3):397-403.
    BONILLA S, TRAN H, ALLEN D G. Enhancing pulp and paper mill biosludge dewaterability using enzymes[J]. Water Research, 2015, 68:692-700.
    WANG Y W, WEI Y S, LIU J X. Effect of H2O2 dosing strategy on sludge pretreatment by microwave-H2O2 advanced oxidation process[J]. Journal of Hazardous Materials, 2009, 169(1/2/3):680-684.
    WANG Y W, XIAO Q C, LIU J B, et al. Pilot-scale study of sludge pretreatment by microwave and sludge reduction based on lysis-cryptic growth[J]. Bioresource Technology, 2015, 190:140-147.
    MEHDIZADEH S N, ESKICIOGLU C, BOBOWSKI J, et al. Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge[J]. Water Research, 2013, 47(14):5040-5051.
    WALTER W G. Standard methods for the examination of water and wastewater (11th ed.)[J]. American Journal of Public Health and the Nations Health, 1961, 51(6):940.
    路苹, 于同泉, 王淑英, 等. 蛋白质测定方法评价[J]. 北京农学院学报, 2006, 21(2):65-69.
    钟方晓, 任海华, 李岩. 多糖含量测定方法比较[J]. 时珍国医国药, 2007, 18(8): 126-127.
    王黎明, 夏文水. 蒽酮-硫酸法测定茶多糖含量的研究[J]. 食品科学, 2005, 26(7):185-188.
    ZHANG T, WANG Q, KHAN J, et al. Free nitrous acid breaks down extracellular polymeric substances in waste activated sludge[J]. RSC Advances, 2015, 54(5):43312-43318.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (63) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return