Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 38 Issue 5
Aug.  2020
Turn off MathJax
Article Contents
LIU Peng-xiao, WANG Xu, FENG Ling. OCCURRENCES, RESOURCES AND RISK OF ANTIBIOTICS IN AQUATIC ENVIRONMENT: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 36-42. doi: 10.13205/j.hjgc.202005007
Citation: LIU Peng-xiao, WANG Xu, FENG Ling. OCCURRENCES, RESOURCES AND RISK OF ANTIBIOTICS IN AQUATIC ENVIRONMENT: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 36-42. doi: 10.13205/j.hjgc.202005007

OCCURRENCES, RESOURCES AND RISK OF ANTIBIOTICS IN AQUATIC ENVIRONMENT: A REVIEW

doi: 10.13205/j.hjgc.202005007
  • Received Date: 2018-09-17
  • With the development of modern analysis technologies and the enhanced consciousness of people for environmental security, occurrence of antibiotics as emerging organic contaminants (EOCs) in the environment have received growing global concerns. The present paper reviewed the pollution status of antibiotics in varied waters and analyzed the source and environmental risks of antibiotics in the aquatic environment. Results reveal that both detection frequencies and concentrations of antibiotics in coastal waters or rivers are higher than those in lakes and underground waters, which was probably due to the more frequent human activities and wastewater discharge from wastewater treatment plants (WWTPs) in the former. Wastewater discharge from WWTPs is considered one of the main resources of antibiotics present in the aquatic environment. And the antibiotics removal efficiencies in WWTPs are related to physicochemical property of antibiotics and treatment processes used in WWTPs.
  • loading
  • MIRZAEI R, YUNESIAN M, NASSERI S, et al. Occurrence and fate of most prescribed antibiotics in different water environments of tehran, iran [J]. Science of the Total Environment, 2018, 619/620:446-459.
    LI S, SHI W Z, LIU W, et al. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005—2016) [J]. Science of the Total Environment, 2018, 615:906-917.
    HU Y, YAN X, SHEN Y, et al. Antibiotics in surface water and sediments from hanjiang river, central china: occurrence, behavior and risk assessment [J]. Ecotoxicology and Environment Safety, 2018, 157:150-158.
    DINH Q T, ALLIOT F, MOREAU-GUIGON E, et al. Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole lc-ms/ms [J]. Talanta, 2011, 85(3): 1238-1245.
    FILLASTRE J P, LEROY A, HUMBERT G. Ofloxacin pharmacokinetics in renal failure [J]. Antimicrobial Agents and Chemotherapy, 1987, 31(2): 156-160.
    VANDERHAEGHE H, HOOGMARTENS J. Macrolides: Chemistry, Pharmacology and Clinical Uses[M]. Arnette Blackwell: Paris, 1993.
    WILLE K, NOPPE H, VERHEYDEN K, et al. Validation and application of an lc-ms/ms method for the simultaneous quantification of 13 pharmaceuticals in seawater [J]. Analytical and Bioanalytical Chemistry, 2010, 397(5): 1797-1808.
    KAFAEI R, PAPARI F, SEYEDABADI M, et al. Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the persian gulf, iran [J]. Science of the Total Environment, 2018, 627:703-712.
    SPONGBERG A L, WITTER J D, ACUÑA J, et al. Reconnaissance of selected ppcp compounds in costa rican surface waters [J]. Water Research, 2011, 45(20): 6709-6717.
    MINH T B, LEUNG H W, LOI I H, et al. Antibiotics in the hong kong metropolitan area: ubiquitous distribution and fate in victoria harbour [J]. Marine Pollution Bulletin, 2009, 58(7): 1052-1062.
    DU J, ZHAO H X, LIU S S, et al. Antibiotics in the coastal water of the south Yellow Sea in China: occurrence, distribution and ecological risks [J]. Science of the Total Environment, 2017, 595:521-527.
    ZOU S C, XU W H, ZHANG R J, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities [J]. Environmental Pollution, 2011, 159(10): 2913-2920.
    KOLPIN D W, FURLONG E T, MEYER M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999—2000: a national reconnaissance [J]. Environmental Science & Technology, 2002, 36(6): 1202-1211.
    TUC D Q, ALLIOT F, MOREAU-GUIGON E, et al. Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole lc-ms/ms [J]. Talanta, 2011, 85(3): 1238-1245.
    ZUCCATO E, CASTIGLIONI S, BAGNATI R, et al. Source, occurrence and fate of antibiotics in the italian aquatic environment [J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 1042-1048.
    GRUJIĆ S, VASILJEVIĆ T, LAUŠEVIĆ M. Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography-ion trap-tandem mass spectrometry [J]. Journal of Chromatography A, 2009, 1216(25): 4989-5000.
    MANAGAKI S, MURATA A, TAKADA H, et al. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong delta [J]. Environmental Science & Technology, 2007, 41(23): 8004-8010.
    KIM S D, CHO J, KIM IN S, et al. Occurrence and removal of pharmaceuticals and endocrine disruptors in south Korean surface, drinking, and waste waters [J]. Water Research, 2007, 41(5): 1013-1021.
    MURATA A, TAKADA H, MUTOH K, et al. Nationwide monitoring of selected antibiotics: distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers [J]. Science of the Total Environment, 2011, 409(24): 5305-5312.
    XU W H, ZHANG G, ZOU S C, et al. Determination of selected antibiotics in the victoria harbour and the pearl river, south China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry [J]. Environmental Pollution, 2007, 145(3): 672-679.
    XU W H, ZHANG G, ZOU S C, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China [J]. Water Environment Research, 2009, 81(3): 248-254.
    JIANG L, HU X L, YIN D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China [J]. Chemosphere, 2011, 82(6): 822-828.
    YAN C X, YANG Y, ZHOU J L, et al. Antibiotics in the surface water of the yangtze estuary: occurrence, distribution and risk assessment [J]. Environmental Pollution, 2013, 175: 22-29.
    SUN J, LUO Q, WANG D H, et al. Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China [J]. Ecotoxicology and Environmental Safety, 2015, 117: 132-140.
    LI H X, HELM P A, METCALFE C D. Sampling in the great lakes for pharmaceuticals, personal care products, and endocrine-disrupting substances using the passive polar organic chemical integrative sampler [J]. Environmental Toxicology and Chemistry, 2010, 29(4): 751-762.
    BLAIR B D, CRAGO J P, HEDMAN C J, et al. Pharmaceuticals and personal care products found in the great lakes above concentrations of environmental concern [J]. Chemosphere, 2013, 93(9): 2116-2123.
    MORASCH B, BONVIN F, REISER H, et al. Occurrence and fate of micropollutants in the vidy bay of lake geneva, Switzerland. Part ii: micropollutant removal between wastewater and raw drinking water [J]. Environmental Toxicology and Chemistry, 2010, 29(8): 1658-1668.
    ZHU S C, CHEN H, LI J N. Sources, distribution and potential risks of pharmaceuticals and personal care products in Qingshan Lake Basin, Eastern China [J]. Ecotoxicology and Environmental Safety, 2013, 96: 154-159.
    LIU X H, LU S Y, GUO W, et al. Antibiotics in the aquatic environments: a review of lakes, China [J]. Science of the Total Environment, 2018, 627:1195-1208.
    LU G H, YANG X F, LI Z H, et al. Contamination by metals and pharmaceuticals in northern Taihu Lake (China) and its relation to integrated biomarker response in fish [J]. Ecotoxicology, 2013, 22(1): 50-59.
    BATT A L, SNOW D D, AGA D S. Occurrence of sulfonamide antimicrobials in private water wells in Washington County, idaho, USA [J]. Chemosphere, 2006, 64(11): 1963-1971.
    KATHLEEN J. Miller Joseph Meek, Helena Valley Ground Water: Pharmaceuticals, Personal Care Products, Endocrine Disruptors (PPCPs), and Microbial Indicators of Fecal Contamination[R]. Montana Bureau of Mines and Geology Open-File Report 532: 2006.
    HU X G, ZHOU Q X, LUO Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China [J]. Environmental Pollution, 2010, 158(9): 2992-2998.
    MA Y P, LI M, WU M M, et al. Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge[J]. Science of the Total Environment, 2015, 518/519: 498-506.
    KVMMERER K. Antibiotics in the aquatic environment: a review-Part Ⅰ[J]. Chemosphere, 2009, 75(4): 417-434.
    WATKINSON A J, MURBY E J, KOLPIN D W, et al. The occurrence of antibiotics in an urban watershed: from wastewater to drinking water [J]. Science of the Total Environment, 2009, 407(8): 2711-2723.
    CHA J M, YANG S, CARLSON K H. Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry [J]. Journal of Chromatography A, 2006, 1115(1/2): 46-57.
    YASOJIMA M, NAKADA N, KOMORI K, et al. Occurrence of levofloxacin, clarithromycin and azithromycin in wastewater treatment plant in japan [J]. Water Science and Technology, 2006, 53(11): 227-233.
    ZHANG H M, LIU P X, FENG Y J, et al. Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China [J]. Marine Pollution Bulletin, 2013, 73(1): 282-290.
    RADJENOVIC J, PETROVIC M, BARCELÓ D. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor [J]. Analytical and Bioanalytical Chemistry, 2007, 387(4): 1365-1377.
    WATKINSON A J, MURBY E J, COSTANZO S D. Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling [J]. Water Research, 2007, 41(18): 4164-4176.
    YANG S, CHA J M, CARLSON K. Simultaneous extraction and analysis of 11 tetracycline and sulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography-electrospray ionization tandem mass spectrometry [J]. Journal of Chromatography A, 2005, 1097(1/2): 40-53.
    SARMAH A K, MEYER M T, BOXALL A B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (vas) in the environment [J]. Chemosphere, 2006, 65(5): 725-759.
    ANDREOZZI R, CAPRIO V, CINIGLIA C, et al. Antibiotics in the environment: occurrence in italian stps, fate, and preliminary assessment on algal toxicity of amoxicillin [J]. Environmental Science & Technology, 2004, 38(24): 6832-6838.
    GONZALEZ-PLEITER M, GONZALO S, RODEA-PALOMARES I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment [J]. Water Research, 2013, 47(6): 2050-2064.
    BACKHAUS T, KARLSSON M. Screening level mixture risk assessment of pharmaceuticals in STP effluents [J]. Water Research, 2014, 49: 157-165.
    LUO Y, MAO D Q, RYSZ M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China [J]. Environmental Science & Technology, 2010, 44(19): 7220-7225.
    JIANG L, HU X L, XU T, et al. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China [J]. Science of the Total Environment, 2013, 458/459/460: 267-272.
    BENOTTI M J, TRENHOLM R A, VANDERFORD B J, et al. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water [J]. Environmental Science & Technology, 2009, 43(3): 597-603.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (647) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return