Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
GONG Yun-li, BI Yin-li, HU Jing-jing, GUO Chen. EFFECT OF INOCULATION WITH AM FUNGI ON MAIZE GROWTH AND HYPERSPECTRAL ESTIMATION OF TOTAL NITROGEN CONTENT IN MAIZE LEAVES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 210-214. doi: 10.13205/j.hjgc.202005036
Citation: ZHU Xiao-ming, ZHAO Dong-hua, RUAN Xiao-hong. IDENTIFICATION AND NITROGEN REMOVAL CHARACTERISTICS OF A HETEROTROPHIC NITRIFICATION-AEROBIC DENITRIFYING STRAIN ISOLATED FROM UNCONFINED AQUIFER POROUS MEDIA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 43-48. doi: 10.13205/j.hjgc.202005008

IDENTIFICATION AND NITROGEN REMOVAL CHARACTERISTICS OF A HETEROTROPHIC NITRIFICATION-AEROBIC DENITRIFYING STRAIN ISOLATED FROM UNCONFINED AQUIFER POROUS MEDIA

doi: 10.13205/j.hjgc.202005008
  • Received Date: 2019-04-09
  • A heterotrophic nitrification and aerobic denitrification bacterium strain named XK51 was isolated and purified from nitrogen-contaminated shallow aquifer porous media. The strain was identified as Pseudomonas Putida by morphological observation, physiological and biochemical characteristics and 16S rDNA gene sequence analysis. The results showed that strain XK51 was a facultative denitrifying bacteria, which could achieve high denitrification efficiencies under aerobic or anaerobic conditions. The maximum and average denitrification rate were 27.3 mg/(L·h) and 4.4 mg/(L·h), the nitrate removal efficiency was 95.3%. XK51 also had high heterotrophic nitrification capacity, and its maximum and average nitrification rate were 4.2 mg/(L·h) and 1.4 mg/(L·h), then the ammonia removal efficiency was 98.5%. The optimum carbon source was trisodium citrate, and the optimum growth temperature ranged from 28 to 35 ℃, with a preferred value of 30 ℃. The optimum cultivating pH value ranged from 6.5 to 8.0, with a preferred value of 7.0. Strain XK51 could simultaneously carry out heterotrophic nitrification and simultaneous nitrification-denitrification with no obvious nitrite and nitrate accumulation during cultivation. It has potential engineering application value in nitrogen-containing wastewater treatment and nitrogen pollution remediation of groundwater.
  • LEI Y, WANG Y Q, LIU H J, et al. A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium[J]. Applied Microbiology and Biotechnology, 2016, 100(9):4219-4229.
    YI X, HE T X, LI Z L, et al. Nitrogen removal characteristics of Pseudomonas putida Y-9 capable of heterotrophic nitrification and aerobic denitrification at low temperature[J]. BioMed Research International, 2017, 10:1-7.
    田雪雪, 程玉立, 张圆圆, 等. 一株异养硝化-好氧反硝化功能菌的分离鉴定及其脱氮特性[J]. 环境工程学报, 2017,11(2):1269-1275.
    周晓黎, 孙迎雪, 沈丹丹, 等. 一株施氏假单胞菌Pseudomonas stutzeri DN-LWX19的脱氮性能[J]. 环境工程学报, 2015, 9(1):247-252.
    王秀杰, 王维奇, 李军, 等. 异养硝化菌Acinetobacter sp.的分离鉴定及其脱氮特性[J]. 中国环境科学, 2017,37(11):4241-4250.
    王田野, 魏荷芬, 胡子全, 等. 一株异养硝化好氧反硝化菌的筛选鉴定及其脱氮特性[J]. 环境科学学报, 2017,37(3):945-953.
    QING H, DONDE O O, TIAN C C, et al. Novel heterotrophic nitrogen removal and assimilation characteristic of the newly isolated bacterium Pseudomonas stutzeri AD-1[J]. Journal of bioscience and bioengineering, 2018, 126(3):339-345.
    牟东阳, 靳鹏飞, 彭永臻, 等. 1株异养硝化-好氧反硝化细菌DK1的分离鉴定及其脱氮特性[J]. 环境科学, 2017,38(11):4763-4773.
    汪旭晖, 杨垒, 任勇翔, 等. 异养硝化细菌Pseudomonas putida YH的脱氮特性及降解动力学[J]. 环境科学, 2019, 40(4): 1892-1899.
    SUN Y L, FENG L, LI A, et al. Ammonium assimilation: an important accessory during aerobic denitrification of Pseudomonas stutzeri T13[J]. Bioresource Technology, 2017, 234:264-272.
    MA F, SUN Y, LI A, et al. Activation of accumulated nitrite reduction by immobilized Pseudomonas stutzeri T13 during aerobic denitrification[J]. Bioresource Technology, 2015, 187:30-36.
    梁贤, 任勇翔, 杨垒, 等. 异养硝化-好氧反硝化菌YL的脱氮特性[J]. 环境科学, 2015,36(5):1749-1756.
    袁梦冬, 辛玉峰. 一株异养硝化-好氧反硝化菌的分离鉴定及脱氮活性[J]. 北华大学学报(自然科学版), 2012,13(3):339-343.
    孙庆花, 于德爽, 张培玉, 等. 1株海洋异养硝化-好氧反硝化菌的分离鉴定及其脱氮特性[J]. 环境科学, 2016,37(2):647-654.
    孙庆花, 于德爽, 张培玉, 等. 海洋菌株y3的分离鉴定及其异养硝化-好氧反硝化特性[J]. 环境科学, 2016, 37(3):1089-1097.
    黄廷林, 白士远, 张海涵, 等. 一株贫营养异养硝化-好氧反硝化细菌的分离鉴定及脱氮特性[J]. 环境工程学报, 2015, 9(12):5665-5671.
    邹艳艳, 张宇, 李明智, 等. 一株异养硝化-好氧反硝化细菌的分离鉴定及脱氮活性研究[J]. 中国环境科学, 2016, 36(3):887-893.
    黄菲菲. 异养硝化-好氧反硝化菌的筛选与脱氮性能研究.[D].南京:南京理工大学,2013.
    黄剑锋,张依章,张远,等. 太湖西苕溪流域地表水、地下水硝酸盐污染特征及来源[J]. 环境科学研究,2012,25(11):1229-1235.
    潘田,张幼宽. 太湖流域长兴县浅层地下水氮污染特征及影响因素研究[J]. 水文地质工程地质,2013,40(4):7-13.
    郭卉,虞敏达,何小松,等. 南方典型农田区浅层地下水污染特征[J]. 环境科学,2016,37(12):4680-4689.
    东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社,2001.
    肖继波, 江惠霞, 褚淑祎. 不同氮源下好氧反硝化菌Defluvibacter lusatiensis str.DN7的脱氮特性[J]. 生态学报, 2012, 32(20):6463-6470.
    孙巍, 宋玉文, 洪维祎, 等. 一株高效异养硝化好氧反硝化菌的分离鉴定与脱氮特性[J]. 龙岩学院学报, 2017,35(5):88-94.
    刘天琪, 金若菲, 周集体, 等. 异养硝化-好氧反硝化菌ADN-42的脱氮特性[J]. 环境工程学报, 2015, 9(2):989-996.
    苏婉昀, 高俊发, 赵红梅. 异养硝化-好氧反硝化菌的研究进展[J]. 工业水处理, 2013, 33(12):1-5.
  • Relative Articles

    [1]HUANG Shaolin, WANG Huijun, HE Ning, HONG Wuyang. HYPERSPECTRAL REMOTE-SENSING ESTIMATE OF CARBON STORAGE OF SUBTROPICAL PINUS MASSONIANA FOREST IN CHANGTING COUNTY, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 147-153. doi: 10.13205/j.hjgc.202405019
    [2]CHEN Shuxin, ZHOU Jingqing, SUN Qinqin, WANG Kun, LIU Zhengzheng, YU Lei, LIU Jinsong, WANG Jing. PHOTOCATALYTIC DEGRADATION OF TRIMETHOPRIM BASED ON WO3-x UNDER FULL SPECTRUM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 140-145,172. doi: 10.13205/j.hjgc.202302019
    [3]XIONG Jianfang, QIAO Fu, LIU Zhongyan, LIU Yao, HAO Bolin, JIANG Wei, XU Lele, LU Liqiong. RAPID AND NON-DESTRUCTIVE DETECTION FOR SHELLFISH CONTAMINATED BY HEAVY METAL BASED ON HYPERSPECTRAL IMAGES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 141-149. doi: 10.13205/j.hjgc.202210019
    [4]LI Huai-bo, ZHENG Kai-kai, WANG Yan, GAO Jun-xian, WANG Shuo, LI Ji. OPERATION REGULATION OF WASTEWATER TREATMENT PLANT WITH LOW CARBON-TO-NITROGEN RATIO INFLUENT BASED ON WHOLE PROCESS ANALYSIS METHOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 97-102,135. doi: 10.13205/j.hjgc.202103014
    [5]YIN Qi-qi, BI Yin-li, LI Bo-xuan, YAN Hao, XU Yao. EFFECTS OF AM FUNGUS INOCULATION ON PHYSIOLOGICAL AND PHOTOSYNTHETIC CHARACTERISTICS OF CARAGANA LEAVES UNDER SOIL COMPACTION STRESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 194-200. doi: 10.13205/j.hjgc.202101030
    [6]SI Guang-zheng, YANG Qing-chen, DONG Jia, YAN Tian-ge, CHANG Jun-jun, CHEN Jin-quan. ISOLATION AND CHARACTERIZATION OF A STAIN OF MERCURY VOLATIZING FUNGUS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 247-252. doi: 10.13205/j.hjgc.202009040
    [7]WEI Jing, ZHENG Xiao-gang, ZHANG Guo-wei, ZHANG Yan-xi, WANG Cai-ling, WANG Ran. NITROGEN AND PHOSPHORUS CONTENT OF SURFACE WATER IN THE UPSTREAM BASIN OF GUANTING RESERVOIR AND MIYUN RESERVOIR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 101-105,144. doi: 10.13205/j.hjgc.202009017
    [14]Zhang Longlong Wu Quanyuan Liu Shuo Zhou Liyuan Cai Dongquan, . RESEARCH ON MONITORING OF Pb CONTENT IN THE SEWAGE IRRIGATION AREA OF LONGKOU CITY USING HYPERSPECTRAL DATA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 114-117. doi: 10.13205/j.hjgc.201508026
  • Cited by

    Periodical cited type(4)

    1. 程世红,刘宇平,彭杰. 氮肥减施配合丛枝菌根真菌对夏玉米产量性状及氮素代谢的影响. 玉米科学. 2024(07): 101-110 .
    2. 肖健,黄小丹,杨尚东,屈达才. 青枯病易感和钝感桑树品种根际土壤真菌群落结构比较. 广西植物. 2022(12): 2099-2108 .
    3. 张金莲,李铭燕,康贻豪,刘金华,陈廷速,李贤良,宋娟,刘升球. 14种AM真菌对枳生长的影响. 热带作物学报. 2021(11): 3278-3283 .
    4. 涂娜娜,武华周,娄德钊,卢芙萍,耿涛,王树昌. 海南青枯病抗、感桑品种根际土壤真菌群落多样性分析. 热带作物学报. 2021(12): 3671-3677 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.3 %FULLTEXT: 6.3 %META: 92.2 %META: 92.2 %PDF: 1.6 %PDF: 1.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.8 %其他: 18.8 %China: 0.8 %China: 0.8 %上海: 0.8 %上海: 0.8 %临汾: 0.8 %临汾: 0.8 %北京: 3.1 %北京: 3.1 %南宁: 0.8 %南宁: 0.8 %台州: 2.3 %台州: 2.3 %大同: 0.8 %大同: 0.8 %天津: 0.8 %天津: 0.8 %常德: 1.6 %常德: 1.6 %广州: 1.6 %广州: 1.6 %张家口: 3.1 %张家口: 3.1 %拉贾斯坦邦: 0.8 %拉贾斯坦邦: 0.8 %昆明: 0.8 %昆明: 0.8 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.8 %朝阳: 0.8 %济源: 1.6 %济源: 1.6 %漯河: 2.3 %漯河: 2.3 %烟台: 0.8 %烟台: 0.8 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %苏州: 0.8 %苏州: 0.8 %衢州: 1.6 %衢州: 1.6 %西宁: 21.9 %西宁: 21.9 %运城: 6.3 %运城: 6.3 %遵义: 1.6 %遵义: 1.6 %邯郸: 0.8 %邯郸: 0.8 %郑州: 1.6 %郑州: 1.6 %重庆: 0.8 %重庆: 0.8 %金华: 0.8 %金华: 0.8 %长春: 2.3 %长春: 2.3 %长治: 0.8 %长治: 0.8 %香港: 0.8 %香港: 0.8 %其他China上海临汾北京南宁台州大同天津常德广州张家口拉贾斯坦邦昆明晋城朝阳济源漯河烟台石家庄芒廷维尤苏州衢州西宁运城遵义邯郸郑州重庆金华长春长治香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (153) PDF downloads(7) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return