Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DENG Lin-li, ZHANG Kai-shan. ANALYSIS OF CHARACTERISTICS AND SOURCE APPORTION OF METAL POLLUTION IN PM2.5 IN TYPICAL METROPOLITAN CITIES WITH HAZE POLLUTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 113-119. doi: 10.13205/j.hjgc.202005020
Citation: PAN Jun, SUN Bo-yang, WEI Wei, ZHANG Jin, TAN Shuai-chen, LI Rui-fang. EXPERIMENT OF MICRO-POLLUTED WATER TREATMENT BY COMBINED TECHNOLOGY OF MICRO-NANO AERATION-ECOLOGICAL FLOATING WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 49-53,209. doi: 10.13205/j.hjgc.202005009

EXPERIMENT OF MICRO-POLLUTED WATER TREATMENT BY COMBINED TECHNOLOGY OF MICRO-NANO AERATION-ECOLOGICAL FLOATING WETLAND

doi: 10.13205/j.hjgc.202005009
  • Received Date: 2019-04-14
  • In traditional aerated ecological floating wetland, the water body was usually stirred vigorously, and the microbial membrane and the rhizosphere were not stabilized, thus, the nitrogen and phosphorus removal effects of the polluted water were affected. Therefore, a new micro-nano aeration-eco-float wetland was constructed in this paper. The chamber generated micro-nano bubbles through a micro-nano rubber aeration tube to improve the removal of nitrogen and phosphorus. The results showed that the removal rate of NH4+-N in the aerated group was 99.8% in 20 days; the removal rate of TP was 93.03%; the removal rate of NO3--N was 78%, so that the water with inferior Ⅴ quality could be treated to meet Class III emission standards, and the weak acidic water could also be modified into neutral. The experiment proved that the micro-nano aeration-eco-floating island combined technology could effectively improve the dissolved oxygen content of the water body in short term, and reduce stirring to a weak level to the water body, which helped to improve the stability of the bio-filler membrane, and the removal effect of nitrogen and phosphorus was higher than the traditional ecological floating wetland obviously. This experiment provided a technical basis for the promotion and application of micro-nano aeration-ecological floating wetland joint technology.
  • 卢进登,帅方敏,赵丽娅,等. 人工生物浮床技术治理富营养化水体的植物遴选[J]. 湖北大学学报(自然科学版), 2005,27(4):402-404.
    周小平,王建国,薛利红,等. 浮床植物系统对富营养化水体中氮、磷净化特征的初步研究[J]. 应用生态学报, 2005,16(11):2199-2203.
    LAUREN M. GARCIA C.Aeration and plant coverage influence floating treatment wetland remediation efficacy[J].Ecological Engineering, 2018,122:62-68.
    王芳,张汇文,吴国华,等.生物质碳源组合型生态浮床系统脱氮效果研究[J]. 环境工程学报,2014,8(8):3099-3106.
    陈亚男,郭宗楼,郑水生,等.新型立体浮床处理河道微污染源水的挂膜特征[J].环境工程学报,2013,7(2):477-482.
    邴旭文,陈家长. 浮床无土栽培植物控制池塘富营养化水质[J]. 湛江海洋大学学报, 2001,21(3):29-34.
    谢建华,杨华. 不同植物对富营养化水体净化的静态试验研究[J]. 工业安全与环保,2006,32(6): 23-25.
    潘俊,魏炜,孙舶洋.一种光感主动式立体人工浮岛:中国,CN208071435U[P].2018-11-09.
    孙连鹏,冯晨,刘阳,等. 强化生态浮床对珠江水中氮污染物去除研究[J]. 中山大学学报(自然科学版),2009,48(4):93-97.
    卢萃云,庞志华,林芳敏,等. 曝气充氧和人工造流技术修复河道污染水体[J]. 环境工程学报,2012,6(4):1135-1141.
    LI M, WU Y J,YU Z L. Nitrogen removal from eutrophic water by floating-bed grown water spinach (Ipomoea aquatica Forsk) with ion implantation[J]. Water Research, 2007,41(14):3152-3158.
    SOOKNAH R D, WILKIE A C. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater[J]. Ecological Engineering, 2004, 22(1): 27-42.
    BATTY L C, ATKIN L, MANNING D A. Assessment of the ecological potential of mine-water treatment wetlands using a baseline survey of macroinvertebrate communities[J]. Environmental Pollution,2005, 138(3): 412-419.
    HALLER W T. Evaluation of the Ke IP in 800 a quatie weed harvester, Orange Lake, Florida 1995[J].Aquaties,1996, 18(3): 10-15.
    NAKAMURA K, SHIMATANI Y. Water purification and environmental enhancement by artificial floating island[J]. Proceedings of Asia Waterqual in Korea[J]. IANQ, 1997,888-895.
    VAILLANT N, MONNET F, SALLANON H, et al. Treatment of domestic wastewater by an hydroponic NFT system[J]. Chemosphere,2003, 50(1): 121-129.
    HOEGER S. Sehwimmkam Pen Germany’s article floating islands[J]. Journal of Soil and Water Conservation,1988, 43(4): 304-306.
  • Relative Articles

    [1]GUO Qianjin. COMPONENTS CHARACTERISTICS AND SOURCE APPORTIONMENT OF PM2.5 IN AUTUMN AND WINTER IN JINCHENG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 153-161. doi: 10.13205/j.hjgc.202407017
    [2]LIU Haotian, TONG Jilong, YANG Hong, LIU Yongle, AO Congjie, WANG Shusu. COMPARATIVE STUDY ON VOCs POLLUTION CHARACTERISTICS AND SOURCE ANALYSIS BETWEEN LANZHOU DOWNTOWN AREA AND XIGU REFINING CHEMICAL INDUSTRY ZONE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 139-147. doi: 10.13205/j.hjgc.202404017
    [3]SONG Lusheng, SUN Zhenzhou, HU Jing, DENG Qinghai. POLLUTION CHARACTERISTICS AND SOURCE APPORTIONMENT OF HEAVY METALS IN AN ABANDONED IRON ORE AND DOWNSTREAM FARMLAND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 155-164. doi: 10.13205/j.hjgc.202410019
    [4]ZHAO Wanning, CUI Jijing, BAI Liyong, YU Xiaojing, DAI Jiulan. RESEARCH PROGRESS ON NITRATE SOURCE ANALYSIS METHODS FOR WATER ENVIRONMENT IN WATERSHEDS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 286-294. doi: 10.13205/j.hjgc.202308036
    [5]ZHANG Yibing, LIANG Yiqun, ZHANG Yuan, FANG Yinxiang, NIU Hongya, FAN Jingsen. SOURCE APPORTIONMENT AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN PM2.5 IN THE FENGFENG MINING AREA IN 2017—2019[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 242-250. doi: 10.13205/j.hjgc.202308031
    [6]LI Ganyu, CUI Xingtao. CHARACTERISTICS OF HEAVY METAL ELEMENTS POLLUTION AND HEALTH RISK ASSESSMENT OF ATMOSPHERIC DUST-FALL IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 278-287. doi: 10.13205/j.hjgc.202312035
    [7]GAO Wei, CHEN Yan, YAN Changan, LIU Yong. SOURCE IDENTIFICATION OF PHOSPHORUS IN VARIOUS DISTURBED RIVERS BASED ON LAM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 55-62. doi: 10.13205/j.hjgc.202206007
    [8]ZHU Xue-tao, LIN Hai-ying, FENG Qing-ge, ZHAO Bo-han, ZHU Yi-fan, LAN Wen-lu, LI Tian-shen. POLLUTION AND RISK ASSESSMENT, SOURCE ANALYSIS OF HEAVY METALS IN SURFACE SEDIMENTS OF BEIBU GULF, GUANGXI[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 69-76. doi: 10.13205/j.hjgc.202108009
    [18]Wang Zaifeng, Zhang Shuiyan, Zhang Huaicheng, Zhao Hong, Ji Yaqin. SOURCE APPORTIONMENT TECHNOLOGY OF RIVER POLLUTION SOURCE BY WATER QUALITY MODEL COUPLING WITH CMB MODEL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 135-139. doi: 10.13205/j.hjgc.201502030
    [19]Yang Long Sun Changhong Li Shanshan Liu Guizhong, . COMPARATIVE STUDY ON HEAVY METAL POLLUTION OF SURFACE DUST IN TYPICAL INDUSTRIES ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 122-125. doi: 10.13205/j.hjgc.201502027
  • Cited by

    Periodical cited type(5)

    1. 楚君,雷晓慧. 北方城市市区大气臭氧污染时空变化特征分析与协同治理策略研究. 环境科学与管理. 2023(02): 125-128+138 .
    2. 谢勇,曹玲,姚瑶,姚宏伟,王爽. 持续性雾霾气象灾害风险预警方法研究. 环境科学与管理. 2023(04): 28-33 .
    3. 荣素英,刘佳佳,杨文琦,曾豪,张磊,方波,徐厚君,王茜. 大学生尿液金属水平与肺功能的关系. 中国学校卫生. 2022(02): 288-291 .
    4. 李强. 供热通风空调气体排放特征及污染趋势研究. 环境科学与管理. 2022(06): 129-133 .
    5. 范圣虎,张飞云. 利用大气超级站对乌鲁木齐市一次沙尘天气过程及组份的分析. 干旱环境监测. 2021(01): 15-22 .

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.5 %FULLTEXT: 6.5 %META: 90.7 %META: 90.7 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.2 %其他: 13.2 %其他: 0.6 %其他: 0.6 %China: 2.0 %China: 2.0 %United States: 0.2 %United States: 0.2 %[]: 0.4 %[]: 0.4 %上海: 2.0 %上海: 2.0 %东莞: 1.0 %东莞: 1.0 %临汾: 0.2 %临汾: 0.2 %佛山: 0.2 %佛山: 0.2 %保定: 2.4 %保定: 2.4 %兰州: 0.2 %兰州: 0.2 %北京: 11.6 %北京: 11.6 %南京: 3.2 %南京: 3.2 %南宁: 0.2 %南宁: 0.2 %南昌: 0.6 %南昌: 0.6 %南通: 0.4 %南通: 0.4 %厦门: 0.2 %厦门: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 1.0 %合肥: 1.0 %呼和浩特: 0.4 %呼和浩特: 0.4 %唐山: 0.4 %唐山: 0.4 %大同: 0.2 %大同: 0.2 %天津: 1.2 %天津: 1.2 %太原: 0.8 %太原: 0.8 %宁波: 0.6 %宁波: 0.6 %安阳: 0.2 %安阳: 0.2 %宿州: 0.8 %宿州: 0.8 %宿迁: 0.8 %宿迁: 0.8 %常州: 0.2 %常州: 0.2 %常德: 0.4 %常德: 0.4 %广州: 2.8 %广州: 2.8 %开封: 0.6 %开封: 0.6 %张家口: 2.2 %张家口: 2.2 %徐州: 1.0 %徐州: 1.0 %德州: 0.4 %德州: 0.4 %成都: 2.0 %成都: 2.0 %拉贾斯坦邦: 0.2 %拉贾斯坦邦: 0.2 %揭阳: 0.2 %揭阳: 0.2 %昆明: 0.8 %昆明: 0.8 %昌吉: 0.2 %昌吉: 0.2 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 5.3 %杭州: 5.3 %柳州: 0.8 %柳州: 0.8 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.2 %泰安: 0.2 %济南: 0.8 %济南: 0.8 %济宁: 0.2 %济宁: 0.2 %济源: 0.4 %济源: 0.4 %深圳: 0.8 %深圳: 0.8 %温州: 0.2 %温州: 0.2 %湖州: 0.4 %湖州: 0.4 %漯河: 1.0 %漯河: 1.0 %潍坊: 0.4 %潍坊: 0.4 %班加罗尔: 0.6 %班加罗尔: 0.6 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.4 %福州: 0.4 %秦皇岛: 0.2 %秦皇岛: 0.2 %绍兴: 0.2 %绍兴: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 12.6 %芒廷维尤: 12.6 %芝加哥: 0.8 %芝加哥: 0.8 %苏州: 0.4 %苏州: 0.4 %荆州: 1.0 %荆州: 1.0 %菏泽: 0.6 %菏泽: 0.6 %衡水: 0.6 %衡水: 0.6 %衢州: 1.4 %衢州: 1.4 %西宁: 3.2 %西宁: 3.2 %西安: 1.2 %西安: 1.2 %达州: 0.2 %达州: 0.2 %运城: 1.6 %运城: 1.6 %连云港: 0.2 %连云港: 0.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.6 %郑州: 0.6 %重庆: 0.2 %重庆: 0.2 %长沙: 2.0 %长沙: 2.0 %长治: 0.2 %长治: 0.2 %阳泉: 0.2 %阳泉: 0.2 %青岛: 1.4 %青岛: 1.4 %其他其他ChinaUnited States[]上海东莞临汾佛山保定兰州北京南京南宁南昌南通厦门台州合肥呼和浩特唐山大同天津太原宁波安阳宿州宿迁常州常德广州开封张家口徐州德州成都拉贾斯坦邦揭阳昆明昌吉晋城朝阳杭州柳州格兰特县武汉沈阳泰安济南济宁济源深圳温州湖州漯河潍坊班加罗尔石家庄福州秦皇岛绍兴绵阳芒廷维尤芝加哥苏州荆州菏泽衡水衢州西宁西安达州运城连云港遵义邯郸郑州重庆长沙长治阳泉青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (235) PDF downloads(14) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return