Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HUANG Pan-pan, WANG Chen-chen, QIU Chun-sheng, SUN Li-ping, HU Shuai-long, ZHANG Yi-fan. OCCURRENCE, ENVIRONMENTAL RISK AND WATER QUALITY STANDARD OF PAEs IN WATER ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 23-29. doi: 10.13205/j.hjgc.202005005
Citation: LIU Hai-yan, LI Dong, MIAO Xue, ZHU Yuan-yuan, LIU Xiao-feng, LV Ying, LI Jie, WU Ping-xia, PENG Yue, CHEN Jian-jun, LI Jun-hua. EFFECT OF PREPARATION METHODS OF CuO-WO3/TiO2 CATALYSTS ON NH3-SCR DENITRATION ACTIVITY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 89-95. doi: 10.13205/j.hjgc.202005016

EFFECT OF PREPARATION METHODS OF CuO-WO3/TiO2 CATALYSTS ON NH3-SCR DENITRATION ACTIVITY

doi: 10.13205/j.hjgc.202005016
  • Received Date: 2019-10-10
  • xCuO-yWO3/TiO2 catalysts (x and y represent the mass fraction of CuO and WO3 in the sample, respectively) were prepared by sol-gel method and impregnation method, respectively, and the SCR denitration performance (NH3-SCR) of the catalysts was evaluated in a miniature fixed-bed quartz reactor. It was found that the 2CuO-6WO3/TiO2 catalyst by the sol-gel method had good denitration performance, and made NOx conversion rate over 90% in temperature range of 250~350 ℃, which activity was improved significantly compared with 2CuO-6WO3/TiO2 catalyst by impregnation method. The prepared catalysts were characterized by BET, XRD, H2-TPR, NH3-TPD and XPS. The results showed that for the 2CuO-6WO3/TiO2 catalyst prepared by sol-gel method, the specific surface area, the surface adsorbed oxygen, the redox potential and adsorption capacity of NH3 increased significantly than the catalyst prepared by the impregnation method. Therefore, the 2CuO-6WO3/TiO2 catalyst prepared by sol-gel method exhibited excellent NH3-SCR activity and high N2 selectivity.
  • 郝吉明, 马广大, 大气污染控制工程[M]. 2版. 北京: 高等教育出版,2002.
    崔海峰, 谢峻林, 李凤祥, 等. SCR烟气脱硝技术的研究与应用[J]. 硅酸盐通报, 2016, 35(3): 805-809.
    郭坤, 宋常, 张闻涛. 超声波浸渍法制备V2O5-WO3-TiO2选择性催化还原脱硝催化剂[J]. 环境工程, 2016, 31(2): 76-79.
    钟秦. 燃煤烟气脱硫脱硝技术及工程实例[M]. 北京: 化学工业出版社, 2007.
    杨玲, 李茂, 李建军. SCR催化剂的研究进展[J]. 四川化工, 2012(15): 26-29.
    王玉云, 沈岳松, 纵宇浩, 等. Co、Ni掺入对Pd-Rh型催化剂三效净化C3H8、CO、NO的影响[J]. 环境工程, 2015, 33(2): 62-68.
    郭丽颖, 朱林, 庄柯, 等. 钨对高钒燃气脱硝催化剂的改性及SCR反应历程研究[J]. 环境工程, 2019, 37(5): 160-166

    ,172.
    张强. 燃煤电站SCR烟气脱硝技术及工程应用[M]. 北京: 化学工业出版社, 2002.
    努热曼古丽·图尔荪, 古丽戈娜, 张文河,等. Cu<i>xO(CuO-Cu2O)纳米球催化剂制备及对CO2电化学还原性能影响的研究[J]. 环境工程, 2016, 34(3): 102-106.
    ZHANG H X, ZHANG H B, WANG P C, et al. Organic template-free synthesis of zeolite mordenite nanocrystals through exotic seed-assisted conversion[J]. RSC Advances, 2016, 6: 47623-47631.
    YU T, HAO T, FAN D Q, et al. Recent NH3-SCR mechanism research over Cu/SAPO-34 catalystp[J]. The Journal of Physical Chemistry C, 2016, 118(13): 6565-6575.
    XIE L J, LIU F D, REN L M, et al. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3[J]. Environmental Science & Technology, 2014, 48: 566-572.
    WANG C, WANG J, WANG J Q, et al. The effect of sulfate species on the activity of NH3-SCR over Cu/SAPO-34[J]. Applied Catalysis B: Environmental, 2017, 204: 239-249.
    CORMA A, LI Z B, NAVARRO M T, et al. Synthesis of nano-SSZ-13 and its application in the reaction of methanol to olefins[J]. Catalysis Science & Technology, 2016, 6(13): 5856-5863.
    HAN S, CHENG J, YE Q, et al. Ce doping to Cu-SAPO-18: enhanced catalytic performance for the NH3-SCR of NO in simulated diesel exhaust[J]. Microporous and Mesoporous Materials, 2019,276: 133-146.
    NING P, SONG Z X, LI H, et al. Selective catalytic reduction of NO with NH3 over CeO2-ZrO2-WO3 catalysts prepared by different methods[J]. Applied Surface Science, 2015, 332: 130-137.
    LI K R, WANG Y J, WANG S R, et al. A comparative study of CuO/TiO2-SnO2, CuO/TiO2 and CuO/SnO2 catalysts for low-temperature CO oxidation[J]. Journal of Natural Gas Chemistry, 2009, 18: 449-452.
    PENG Y, LI J H, CHEN L, et al. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3: an experimental and theoretical study[J]. Environmental Science & Technology, 2012, 46: 2864-2869.
    KANG M, PARK E D, KIM J M,et al. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catalysis Today, 2006, 111: 236-241.
    MA Z R, WENG D, WU X D, et al. A novel Nb-Ce/WOx-TiO2 catalyst with high NH3-SCR activity and stability[J]. Catalysis Communications, 2012, 27: 97-100.
    SHAN W P, GENG Y, CHEN X L, et al. A highly efficient CeWOx catalyst for the selective catalytic reduction of NOx with NH3[J]. Catalysis Science & Technology,2016, 6: 1195-1200.
    LI X S, LI K Z, PENG Y,et al. Interaction of phosphorus with a FeTiOx catalyst for selective catalytic reduction of NOx with NH3: influence on surface acidity and SCR mechanism[J]. Chemical Engineering Journal, 2018, 347: 173-183.
    LIU Z M, SU H, CHEN B H, et al. Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NOx by NH3[J]. Chemical Engineering Journal, 2016, 299: 255-262.
    ZHANG Q L, ZHANG Y Q, ZHANG T X, et al. Influence of preparation methods on iron-tungsten composite catalyst for NH3-SCR of NO: the active sites and reaction mechanism[J]. Applied Surface Science, 2019, 36: 144190.
  • Relative Articles

    [1]WANG Zhijie, QI Cheng, LOU Ziyang, WANG Luochun, WANG Chuan. EXPLORING THE RISK OF POLLUTANT TRANSMISSION THROUGH BIRD FORAGING IN LANDFILLS: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 48-57. doi: 10.13205/j.hjgc.202404006
    [2]ZHANG Zhongjie, FENG Jinrong. A REVIEW ON ENVIRONMENTAL POLLUTION, TOXICITY AND HUMAN EXPOSURE OF HEXABROMOCYCLODODECANE, A BROMINATED FLAME RETARDANT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 70-80. doi: 10.13205/j.hjgc.202407007
    [3]HOU Yifan, LIU Lianhua, YANG Wenjin, LIAN Zhongmin. AN ANALYSIS OF RESEARCH TRENDS ABOUT PHTHALATE ESTERS POLLUTION IN AQUATIC ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 60-69. doi: 10.13205/j.hjgc.202407006
    [4]WANG Sheng, HE Jie, LIU Zhizong, LIU Qi, CHEN Yajun, ZHANG Naiming. EFFECT OF PLANTING SEDUM SPECTABILE ON CADMIUM CONCENTRATION IN CONTAMINATED SOIL RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 169-175. doi: 10.13205/j.hjgc.202308021
    [5]GUAN Yanyan, WANG Xiaona, ZHAO Chutong, ZHANG Ze, GAO Ming, WU Chuanfu, WANG Qunhui. STABILIZATION EFFECT AND ENVIRONMENTAL RISK ASSESSMENT OF HEAVY METALS IN MSWI FLY ASH BY DIFFERENT ORGANIC CHELATING AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 304-311. doi: 10.13205/j.hjgc.202312038
    [6]LI Zhanpeng, YUAN Huizhou, KE Shuizhou, YUAN Jiajia, ZHU Jia. EFFECTS OF DIMETHYL PHTHALATE ON VEGETATION-ACTIVATED SLUDGE PROCESS AND ITS REMOVAL PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 202-210. doi: 10.13205/j.hjgc.202212027
    [7]WANG Yingda, LI Xun, WU Xiaowen, LUO Lin, WANG Feng, WANG Weiming. FEASIBILITY EVALUATION SYSTEM FOR DOMESTIC WASTE LANDFILL MINING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 181-187,202. doi: 10.13205/j.hjgc.202203027
    [8]LV Zijuan, WANG Huawei, WU Yajing, SUN Yingjie, WANG Yanan. EFFECT OF PHASE TRANSFORMATION OF NANO-ZERO-VALENT IRON ON STABILIZATION AND POTENTIAL TOXICITY OF ARSENIC IN CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 24-31. doi: 10.13205/j.hjgc.202203005
    [9]XU Yi, YANG Shi-hong, YOU Guo-xiang, HOU Jun. REVIEW OF THE ENVIRONMENTAL BEHAVIORS AND TOXICITY EFFECT OF NANOCERIA IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 7-13,75. doi: 10.13205/j.hjgc.202109002
    [10]YANG Pei-lin, WANG Ji, WANG Zhi-kang, ZHANG Guang-long, QIN Fan-xin. PHTHALATE ESTERS POLLUTION CHARACTERISTICS AND HEALTH RISK OF DRINKING WATER SOURCES IN GUIYANG[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 172-177,27. doi: 10.13205/j.hjgc.202001028
    [11]WANG Yu, ZHUANG Xu-ning, MAO Shao-hua, GU Wei-hua, BAI Jian-feng. ANALYSIS OF TOXIC AND HARMFUL METALS CONTENT AND ECOLOGICAL RISK IN WASTE LCD PANELS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 117-121. doi: 10.13205/j.hjgc.202001018
    [12]LI Shang-lue, ZHU Ying-jie, ZHUANG Xu-ning, WANG Yu, GU Wei-hua, BAI Jian-feng. RESEARCH PROGRESS ON ENVIRONMENTAL RISKS AND RECYCLING OF WASTE LED[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 149-156. doi: 10.13205/j.hjgc.202012025
  • Cited by

    Periodical cited type(8)

    1. 黄盼盼,马翔山,郭亚琦,王晨晨,邱春生. 再生水受纳湖泊中邻苯二甲酸酯的生态风险时空分布及管控建议. 生态毒理学报. 2024(01): 65-73 .
    2. 王亚,肖霞霞,杨云,冯发运,宋立晓,陈小龙,孙星,李勇,曾晓萍,马金骏,余向阳. 江苏产区大蒜中邻苯二甲酸酯含量检测及溯源分析. 环境科学. 2023(02): 1029-1039 .
    3. 马荣,刘云根,王妍,张叶飞. 高压脉冲气液相放电对双酚A降解的研究. 科学技术与工程. 2023(06): 2664-2670 .
    4. 徐玉金,黄辉,孔博宁,郑凯,张徐祥,任洪强. 邻苯二甲酸酯在水环境中的分布及去除技术研究进展. 净水技术. 2022(02): 24-33+149 .
    5. 付国庆,代娟,张浩,成金鑫,易玲娜,全超,张玲,宋世震,石玉琴. 氧化应激介导STAT3/p53通路调控邻苯二甲酸单(2-乙基己基)酯诱导的小鼠初级精母细胞凋亡. 卫生研究. 2022(02): 278-285 .
    6. 弥启欣,国晓春,卢少勇,邓义祥,卢洪斌,李响,刘晓贺,陈金明. 千岛湖水体中邻苯二甲酸酯(PAEs)的分布特征及健康风险评价. 环境科学. 2022(04): 1966-1975 .
    7. 王龙,徐雄,朱丹,李雄勇,张广鑫,陈刚,刘权震,林利华,王东红. 城市再生水厂出水中典型有机污染物的赋存情况及其生态风险评价. 环境科学学报. 2021(05): 1910-1919 .
    8. 张志刚,姚玉军,顾翔宇,马素清,赵航,黄雅鑫. 植物油中塑化剂、苯并芘来源及沙棘籽油风险减控方法. 中国油脂. 2021(10): 88-91+115 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.6 %FULLTEXT: 15.6 %META: 82.9 %META: 82.9 %PDF: 1.5 %PDF: 1.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.7 %其他: 13.7 %China: 0.2 %China: 0.2 %[]: 0.2 %[]: 0.2 %上海: 4.9 %上海: 4.9 %东莞: 4.4 %东莞: 4.4 %临汾: 0.2 %临汾: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %保定: 0.5 %保定: 0.5 %北京: 5.9 %北京: 5.9 %十堰: 0.2 %十堰: 0.2 %南京: 1.5 %南京: 1.5 %南宁: 0.2 %南宁: 0.2 %南昌: 1.7 %南昌: 1.7 %南通: 0.2 %南通: 0.2 %南阳: 0.2 %南阳: 0.2 %台州: 0.7 %台州: 0.7 %大同: 0.2 %大同: 0.2 %天津: 0.7 %天津: 0.7 %太原: 1.0 %太原: 1.0 %宁波: 0.5 %宁波: 0.5 %宜昌: 0.7 %宜昌: 0.7 %宣城: 0.5 %宣城: 0.5 %崇左: 0.5 %崇左: 0.5 %常德: 0.5 %常德: 0.5 %广州: 3.7 %广州: 3.7 %延安: 0.2 %延安: 0.2 %张家口: 0.5 %张家口: 0.5 %成都: 1.0 %成都: 1.0 %扬州: 1.7 %扬州: 1.7 %拉贾斯坦邦: 0.2 %拉贾斯坦邦: 0.2 %无锡: 0.5 %无锡: 0.5 %昆明: 0.2 %昆明: 0.2 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.2 %朝阳: 0.2 %杭州: 2.4 %杭州: 2.4 %桂林: 0.7 %桂林: 0.7 %武汉: 1.7 %武汉: 1.7 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.2 %沧州: 0.2 %济源: 0.5 %济源: 0.5 %海口: 0.2 %海口: 0.2 %深圳: 1.2 %深圳: 1.2 %温州: 0.2 %温州: 0.2 %湖州: 0.5 %湖州: 0.5 %湛江: 0.2 %湛江: 0.2 %漯河: 2.9 %漯河: 2.9 %濮阳: 0.2 %濮阳: 0.2 %烟台: 0.2 %烟台: 0.2 %玉溪: 1.0 %玉溪: 1.0 %盐城: 0.2 %盐城: 0.2 %石家庄: 0.7 %石家庄: 0.7 %福州: 0.2 %福州: 0.2 %红河: 0.2 %红河: 0.2 %绍兴: 0.5 %绍兴: 0.5 %芒廷维尤: 25.6 %芒廷维尤: 25.6 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 0.2 %苏州: 0.2 %衡阳: 0.5 %衡阳: 0.5 %衢州: 0.2 %衢州: 0.2 %西安: 0.2 %西安: 0.2 %贵阳: 0.2 %贵阳: 0.2 %达州: 0.2 %达州: 0.2 %运城: 2.0 %运城: 2.0 %遵义: 0.5 %遵义: 0.5 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %重庆: 2.4 %重庆: 2.4 %金华: 0.2 %金华: 0.2 %长春: 0.5 %长春: 0.5 %长治: 0.2 %长治: 0.2 %阿坝: 0.2 %阿坝: 0.2 %青岛: 0.2 %青岛: 0.2 %鞍山: 0.2 %鞍山: 0.2 %鹤岗: 0.2 %鹤岗: 0.2 %黄石: 0.2 %黄石: 0.2 %其他China[]上海东莞临汾乌鲁木齐保定北京十堰南京南宁南昌南通南阳台州大同天津太原宁波宜昌宣城崇左常德广州延安张家口成都扬州拉贾斯坦邦无锡昆明晋城朝阳杭州桂林武汉沈阳沧州济源海口深圳温州湖州湛江漯河濮阳烟台玉溪盐城石家庄福州红河绍兴芒廷维尤芝加哥苏州衡阳衢州西安贵阳达州运城遵义邯郸郑州重庆金华长春长治阿坝青岛鞍山鹤岗黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (531) PDF downloads(10) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return