Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Wang Qiong, Wang Ping, Fu Hongyuan, He Zhongming. ADSORPTION OF HEXAVALENT CHROMIUM IN WASTEWATER BY MODIFIED FLY ASH DOPING PYRITE CINDERFLY ASH DOPING PYRITE CINDERWASTEWATER/WASTE TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 1-4. doi: 10.13205/j.hjgc.201510001
Citation: YUE Wen-yi, DUAN Chao-long, XIE Dong-ming. SIMULATION OF INTERIOR FLOW FIELD IN THE COMPOSITE BAG FILTER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 120-125,95. doi: 10.13205/j.hjgc.202005021

SIMULATION OF INTERIOR FLOW FIELD IN THE COMPOSITE BAG FILTER

doi: 10.13205/j.hjgc.202005021
  • Received Date: 2019-12-03
  • In this paper, in order to obtain the law of the influence of relative position of the baffles and the inlet and outlet on the air flow distribution in the bag filter, under the condition of higher negative pressure and higher inlet wind speed, the air flow distribution in the composite bag filter under four different boundary conditions were studied through the CFD numerical simulation method. The results were as the follows: the overall uniformity of flue gas treatment capacity was better when the relative position of air inlet and air outlet was 90°; the guide plate arranged at the lower part of the filter bag, which could not only avoid the impact of activated carbon particles on the filter bag, but also make the overall distribution of the flue gas treatment capacity of the filter bag more uniformed; the closer the filter bag was to the edge of the precipitator, the greater the flue gas treatment capacity was because of the inlet jet effect. This research provided a reference for further optimizing the structure of composite bag filters.
  • 张殿印,王纯.脉冲袋式除尘器手册[M].北京:化学工业出版社,2011:1-25.
    谈智玲,彭歌亮,陈全喜,等.燃煤电厂烟尘超低排放协同脱硫废水零排放改造实践探索[J].华电技术,2019,41(5):57-60.
    原辉,刘彦丰,宋景慧,等.1000 MW机组静电除尘器对粉尘颗粒脱除的数值研究[J].热能动力工程,2019(10):114-121.
    刘静波.烧结机烟气脱硫脱硝工程内容及难点研究[J].南方农机,2018,49(10):125.
    李勇,张文青,刘伟冬,等.不同入口导流板炭黑除尘器内部流场的模拟分析[J].橡胶工业, 2017,64(12): 749-753.
    孙小云,谭志洪,熊桂龙,等.袋式除尘器进风风道流场分析及优化[J].南昌大学学报(工科版), 2018, 40(2): 111-116,136.
    毛锐,刘根凡,邓翔,等.布袋除尘器结构改进的数值模拟研究[J].环境工程, 2015,33(3):82-86

    ,96.
    邓斌,程罡,樊越胜,等.滤筒除尘器进风口优化模拟[J].建筑热能通风空调,2018, 37(1): 92-95

    ,31.
    刘培坤, 王鹤, 杨兴华,等. 球柱形旋风除尘器分离性能数值模拟与实验[J]. 环境工程学报,2019, 13(9): 2189-2197.
    刘栋栋,叶兴联,李立锋,等.电袋复合除尘器气流分布的数值模拟和优化[J].环境工程学报,2017,11(5): 2897-2902.
    张文青,李勇.旋风-滤筒复合除尘器的数值模拟及优化[J].化工机械, 2018,45(1):82-85.
    段超龙,乐文毅,刘贵云,等.气力输送系统中袋式除尘器的模拟研究[J]. 烧结球团,2018,43(2):54-58.
    陈家庆.ANSYS FLUENT技术基础与工程应用[M].北京:中国石化出版社, 2014:100.
    刘含笑,李文华,杨倩,等.袋式除尘器单滤袋流场模拟[J].电力科技与环保, 2019, 35(1):16-18.
    李珊红,丁倩倩,李彩亭.低压脉冲长袋袋式除尘器清灰模拟[J].环境工程,2018,36(8):79-82.
    SHIH T H, LIOU W W, SHABBIR A, et al. A new κ-ε eddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3):227-238.
    郭嘉兴.离线清灰袋式除尘器配气均匀性的数值模拟与优化[D].上海:东华大学,2018:25-28.
    江帆,黄鹏.Fluent高级应用与实例分析[M]. 北京:清华大学出版社, 2018:11-19.
    SUBRENAT A, BELLETTRE J, CLOIREC P L. 3-D numerical simulations of flows in a cylindrical pleated filter packed with activated carbon cloth[J]. Chemical Engineering Science, 2003, 58(22):4965-4973.
  • Relative Articles

    [1]ZHANG Zhong, ZHAO Di, XU Gaojie, NING Pengge, ZHAO Yuehong, CAO Hongbin. INFLUENCE OF IMPURITIES ON DISSOLUTION BEHAVIOR OF SODIUM SULFATE IN COAL CHEMICAL INDUSTRY SALINE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 156-166. doi: 10.13205/j.hjgc.202409015
    [2]ZENG Shaogeng, LIU Yao, LIU Zhongyan. DETECTION OF MUSSELS CONTAMINATED WITH CADMIUM BASED ON NEAR-INFRARED SPECTROSCOPY AND LSPTSVM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 235-242. doi: 10.13205/j.hjgc.202401030
    [3]HU Yuanxiang, LI Yongli, ZHANG Hongjiang, CAO Yinhuan, GONG Yanzhe, CHEN Xi. ANALYSIS OF ORGANIC COMPOUNDS CONTENT AND BIOTOXICITY DURING TREATMENT PROCESS OF FLUE GAS DESULFURIZATION WASTEWATER IN A COAL-FIRED POWER PLANT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 17-24. doi: 10.13205/j.hjgc.202406003
    [4]TAI Dezhi, YU Jixin, ZHANG Hua, ZENG Honghu, SUN Xiaojie, LU Ze. FULVIC ACID SPECTRAL CHARACTERISTICS DURING COMPOSTING OF BIOLEACHING SLUDGE AND DIFFERENT MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 119-128. doi: 10.13205/j.hjgc.202303016
    [5]WANG Hongliang, XU Yueyang, ZHONG Zhaoping, HAN Lei, HUANG Jiawei, XU Yuanqiang. EFFECT OF DESULFURIZATION WASTEWATER ADDITION ON MERCURY RELEASE CHARACTERISTICS DURING COAL COMBUSTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 69-77. doi: 10.13205/j.hjgc.202211010
    [6]XU Min, DU Hongyu, GUO Jiaming, ZHAO Xiaodan, LU Wei, SUN Chao, CHEN Yu, ZHOU Zhen. A PILOT-SCALE EXPERIMENT FOR ZERO LIQUID DISCHARGE AND RESOURCE RECOVERY OF FLUE GAS DESULFURIZATION WASTEWATER IN COAL-FIRED POWER PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 169-175. doi: 10.13205/j.hjgc.202210023
    [7]LI Si-qi, LI Zhen-yang, LIU Lin, JIANG Run, WANG Xiao-hui. THE SCREENING OF LOW-TEMPERATURE NITRIFYING BACTERIA STAINS AND THEIR IMMOBILIZATION AND DENITRIFICATION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 51-58,78. doi: 10.13205/j.hjgc.202112008
    [8]LIAO Quan, LUO Hua-yong, RONG Hong-wei, CHEN Bing-wei, LIANG Ying. ADSORPTION PERFORMANCE OF TETRACYCLINE ONTO NANO-ALUMINA MODIFIED GEL BEADS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 36-42. doi: 10.13205/j.hjgc.202009006
    [9]LU Hong-sheng, GAO Yu-ting, ZHANG Xue, SUN Pei-ming, QIU Meng-meng. REMOVAL OF LEAD(Pb2+)FROM SOIL WITH MICROBIAL FUEL CELLS TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 236-240,184. doi: 10.13205/j.hjgc.202009038
    [10]ZHOU Chuan, WU Qi-rong, YU Jiang-tao, QIN Fu-chu. NUMERICAL SIMULATION FOR FGD WASTEWATER EVAPORATION IN THE FLUE DUCT OF A 2×350 MW COAL-FIRED UNIT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 96-101. doi: 10.13205/j.hjgc.202005017
    [19]Kang Haiyan Yang Zhiguang Huang Xiaonan, . REMOVAL OF HEAVY METALS USING NANOSCALE ZERO-VALENT IRON IMMOBILIZED BY SODIUM ALGINATE/β-CYCLODEXTRIN[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 144-147. doi: 10.13205/j.hjgc.201506032
  • Cited by

    Periodical cited type(2)

    1. 周菁清,余磊,陈书鑫,陆佳锋,许亚璐,季海冰,张柳芳,刘劲松,王静. 浙江省大气颗粒物PM_(2.5)化学组分污染特征分析. 环境科学. 2023(03): 1297-1309 .
    2. 王成,曹靖原,段小琳,陈浩,闫雨龙,彭林. 山西省四城市冬季PM_(2.5)中碳质组分特征及来源分析. 环境工程. 2021(06): 114-121 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.9 %FULLTEXT: 16.9 %META: 81.9 %META: 81.9 %PDF: 1.3 %PDF: 1.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 21.9 %其他: 21.9 %其他: 0.4 %其他: 0.4 %上海: 1.7 %上海: 1.7 %临汾: 0.4 %临汾: 0.4 %保定: 0.4 %保定: 0.4 %北京: 0.8 %北京: 0.8 %台州: 2.1 %台州: 2.1 %合肥: 0.4 %合肥: 0.4 %吉安: 0.4 %吉安: 0.4 %吉隆坡: 0.4 %吉隆坡: 0.4 %咸阳: 0.4 %咸阳: 0.4 %喀什: 0.4 %喀什: 0.4 %大同: 0.4 %大同: 0.4 %天津: 0.4 %天津: 0.4 %安庆: 0.8 %安庆: 0.8 %常德: 1.3 %常德: 1.3 %广州: 0.4 %广州: 0.4 %张家口: 3.0 %张家口: 3.0 %成都: 2.1 %成都: 2.1 %扬州: 0.8 %扬州: 0.8 %昆明: 0.4 %昆明: 0.4 %晋城: 0.8 %晋城: 0.8 %武汉: 1.7 %武汉: 1.7 %济南: 0.8 %济南: 0.8 %漯河: 1.7 %漯河: 1.7 %秦皇岛: 0.4 %秦皇岛: 0.4 %芒廷维尤: 24.9 %芒廷维尤: 24.9 %芝加哥: 2.5 %芝加哥: 2.5 %衢州: 0.4 %衢州: 0.4 %西宁: 19.4 %西宁: 19.4 %贵阳: 1.7 %贵阳: 1.7 %运城: 2.5 %运城: 2.5 %遵义: 0.4 %遵义: 0.4 %郑州: 0.8 %郑州: 0.8 %重庆: 1.3 %重庆: 1.3 %黄冈: 0.8 %黄冈: 0.8 %其他其他上海临汾保定北京台州合肥吉安吉隆坡咸阳喀什大同天津安庆常德广州张家口成都扬州昆明晋城武汉济南漯河秦皇岛芒廷维尤芝加哥衢州西宁贵阳运城遵义郑州重庆黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (263) PDF downloads(14) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return