Citation: | WANG Hui-gang, PENG Ben, YUE Chang-sheng, WU Long, QIU Gui-bo, BAI Zhi-tao, ZHANG Mei, GUO Min. RESEARCH PROGRESS AND PROSPECT OF STEEL SLAG MODIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 133-137,106. doi: 10.13205/j.hjgc.202005023 |
高本恒, 郝以党, 张淑苓, 等. 钢渣综合利用现状及发展趋势[J]. 环境工程, 2016,34(增刊1): 776-779.
|
侯贵华, 李伟, 郭伟, 等. 转炉钢渣的显微形貌及矿物相[J]. 硅酸盐学报, 2008, 36(4): 436-443.
|
方圆, 于峰, 项国圣, 等. 基于灰色理论的三次指数平滑模型预测自然陈化中热闷钢渣f-CaO含量[J]. 硅酸盐通报, 2019, 38(3): 634-639
,648.
|
王晓曦, 邹汉伟. 液态渣显热回收技术现状及前景分析[J]. 铁合金, 2007, 38(5): 34-36.
|
袁润章. 胶凝材料学[M]. 2版. 武汉: 武汉理工大学出版社, 1996.
|
侯新凯, 张锦, 武志江, 等. 不同粉碎机理的钢渣中RO相解离性能[J]. 矿产保护与利用, 2018(5): 115-120,125.
|
王瑞兰, 蒋文莉, 李庚英. 化学激发剂对钢渣体系的激发效果研究[J]. 水科学与工程技术, 2018(4): 12-15.
|
刘瑛, 方宏辉, 韩斌, 等. 钢渣复合料的推广应用研究[J]. 化学工程与装备, 2016(10): 268-270.
|
范付忠, 冯涛, 施惠生, 等. 掺高f-CaO物料的水泥抗硫酸盐性的初步研究[J]. 水泥, 2001(5): 4-7.
|
CENGIZ D A, CAHIT B, OZLEM C, et al. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar[J]. Construction & Building Materials, 2009, 23(1): 548-555.
|
丁新榜, 李建新, 余其俊, 等. 钢渣胶凝性能的优化及其在线重构的研究[C]//全国水泥和混凝土化学及应用技术会议, 南京, 2007.
|
姚娜, 李荣, 张利武. SiO2对钢渣矿相组成的影响[J]. 矿产综合利用, 2018(4): 137-139.
|
吴六顺, 周云, 王珏, 等. 二氧化硅改性钢渣易磨性的研究[J]. 炼钢, 2014, 30(2): 62-65.
|
周云, 方生, 董元篪, 等. SiO2在钢渣改性中的作用[C]//全国冶金物理化学学术会议, 2010.
|
郭辉. 转炉钢渣中铁的还原回收及制备高胶凝性水淬渣的方法研究[D]. 广州:华南理工大学, 2018.
|
WANG Q, YAN P Y, FENG J W. A discussion on improving hydration activity of steel slag by altering its mineral compositions[J]. Journal of Hazardous Materials, 2011, 186(2/3):1070-1075.
|
LI Z B, ZHAO S Y, ZHAO X G, et al. Cementitious property modification of basic oxygen furnace steel slag[J]. Construction and Building Materials, 2013, 48: 575-579.
|
GUO H, YIN S H, YU Q J, et al. Iron recovery and active residue production from basic oxygen furnace (BOF) slag for supplementary cementitious materials[J]. Resources, Conservation & Recycling, 2018, 129: 209-218.
|
周云, 刘会斌, 陈广言, 等. 不同处理方法对钢渣稳定性的影响[C]//全国冶金物理化学学术会议. 2010.
|
饶磊, 吴六顺, 周云, 等. 高温改性及风淬处理对钢渣易磨性影响的工业性试验研究[J]. 炼钢, 2017, 33(6): 73-77.
|
刘仕业, 王占军, 彭犇, 等. 高炉渣对钢渣改性的物理化学基础研究[J]. 工程科学学报, 2018, 40(5): 557-564.
|
ZHANG Z S, LIAN F, MA L J, et al. Effects of quicklime and iron tailings as modifier on composition and properties of steel slag[J]. Journal of Iron and Steel Research, International, 2015, 22(1): 15-20.
|
耿栋健. 重构钢渣及性能与应用[D]. 济南: 济南大学, 2010.
|
CHANG E E, PAN S Y, CHEN Y H, et al. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed[J]. Journal of Hazardous Materials, 2012, 227/228: 97-106.
|
CHANG E E, PAN S Y, CHEN Y H, et al. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor[J]. Journal of Hazardous Materials, 2011, 195: 107-114.
|
PAN S Y, CHIANG P C, CHEN Y H, et al. Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion[J]. Applied Energy, 2014, 113: 267-276.
|
PAN S Y, CHIANG P C, CHEN Y H, et al. Performance evaluation of aqueous carbonation for steelmaking slag: process chemistry[J]. Energy Procedia, 2013, 37: 115-121.
|
SANTOS R M, van BOUWEL J, van DEVELDE E, et al. Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties[J]. International Journal of Greenhouse Gas Control, 2013, 17: 32-45.
|
IIZUKA A, FUJII M, YAMASAKI A, et al. Development of a new CO2 sequestration process utilizing the carbonation of waste cement[J]. Industrial & Engineering Chemistry Research, 2004, 43(24): 7880-7887.
|
TEIR S, ELONEVA S, FOGELHOLM C J, et al. Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production[J]. Energy, 2007, 32(4): 528-539.
|
BAO W J, LI H Q, ZHANG Y. Energy consumption and net CO2 sequestration of indirect mineral carbonation rout for an integrated iron steelmaking industry[C]//The 10th International Conference on CO2 Utilization, Tianjin. 2009.
|
KODAMA S, TAIKI N, NAOKI Y, et al. Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution[J]. Energy, 2008, 33(5): 776-784.
|
杜龙, 马国军, 张翔, 等. 微波场中铵盐浸出钢渣体系的升温行为[J]. 太原理工大学学报, 2014, 45(2): 157-162.
|
SAID A, MATTILA O, ELONEVA S, et al. Enhancement of calcium dissolution from steel slag by ultrasound[J]. Chemical Engineering and Processing: Process Intensification, 2015, 89: 1-8.
|
彭犇. 热态钢渣改性及改性渣物理化学性质研究[D]. 北京: 北京科技大学, 2016.
|
彭犇, 岳昌盛,黄世烁, 等.热态钢渣CO2改性及热力学性能研究[J]. 环境工程, 2015, 33(4): 100-102
,69.
|
白智韬, 岳昌盛, 邱桂博, 等. CO2气体对钢渣组成和性能的影响[J]. 环境工程, 2018, 36(12): 171-176.
|
唐卫军, 廖洪强, 周宇, 等. 转炉渣中游离氧化钙的分布及稳定化研究[J]. 炼钢, 2009, 25(3): 34-36
,41.
|
董晓丹. 转炉钢渣快速吸收二氧化碳试验初探[J]. 炼钢, 2008, 24(5): 29-32.
|
王晟, 岳昌盛, 陈瑶, 等. 钢渣碳酸化用于CO2减排的研究进展与展望[J]. 材料导报, 2016, 30(1): 111-114
,121.
|
[1] | LIU Zhihua, NING Beiyao, RONG Hui, WANG Anhui, ZHANG Yanfang, FENG Yang, LIU De'e, HAN Zhaopan, YUE Changsheng, DAI Xiaomeng. EFFECT OF MICROBIAL MODIFICATION ON STEEL SLAG ON ITS STABILITY AND ITS APPLICATION IN ROAD ENGINEERING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 208-216. doi: 10.13205/j.hjgc.202407023 |
[2] | LIU Wenhao, CHEN Qingcai, XU Tengfei. RESEARCH PROGRESS OF CARBON SEQUESTRATION TECHNOLOGY OF STEEL SLAG UNDER THE BACKGROUND OF DUAL CARBON STRATEGY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 172-182. doi: 10.13205/j.hjgc.202405022 |
[3] | WU Yuedong, LÜ Wen, YUE Changsheng, WU Long, PENG Ben. THEORETICAL RESEARCH AND APPLICATION OF CARBONATION AND MICROBIAL MINERALIZATION OF STEEL SLAG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 171-175. doi: 10.13205/j.hjgc.202403021 |
[4] | LI Sha, WANG Zhaojia, WANG Mingwei, ZHENG Yongchao, ZHAN Jiayu. LONG-TERM LEACHING BEHAVIORS OF HEAVY METALS FROM STEEL SLAG IN CEMENT-BASED CEMENTITIOUS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 136-142. doi: 10.13205/j.hjgc.202303018 |
[5] | SHAO Yan, JIANG Mingming, XIONG Jingchao, GUO Huajun, CHEN Kun, LIU Zihao, XU Xiaoming, HU Guofeng. INFLUENCE OF ADMIXTURES ON STRENGTH AND HYDRATION PERFORMANCE OF STEEL SLAG & DESULFURIZATION ASH BASED CEMENTITIOUS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 134-141. doi: 10.13205/j.hjgc.202212018 |
[6] | WAN Jing-min, ZHANG Fa-wang, HAN Zhan-tao, SONG Pei-pei, BAI Yun. ADSORPTION OF HEAVY METAL IONS ON ALKALI-MELTIING AND HYDROTHERMAL MODIFIED BIOFUEL ASH[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 108-117. doi: 10.13205/j.hjgc.202209015 |
[7] | HAN Meng, ZHANG Liangliang, LU Zhongfei, SUN Jian. COMPARATIVE ANALYSIS OF EVALUATION METHODS FOR STEEL SLAG SOUNDNESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 235-239. doi: 10.13205/j.hjgc.202202034 |
[8] | WANG Yu-hang, YU Wei, ZHAO Si-yu, LIU Shan, JIANG Xiao-hui, LI Qi. ADSORPTION OF ANTIBIOTIC DRUGS IN WATER ENVIRONMENT BY MODIFIED BIOCHAR:A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 91-99,134. doi: 10.13205/j.hjgc.202112014 |
[9] | WU Yue-dong, PENG Ben, WU Long, LV Wen, ZHANG Guo-hua. REVIEW ON GLOBAL DEVELOPMENT OF TREATMENT AND UTILIZATION OF STEEL SLAG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 161-165. doi: 10.13205/j.hjgc.202101025 |
[10] | YONG Xiao-jing, GUAN Chong, ZHANG Hao, JIN Zheng-wei, YAO Min. RESEARCH PROGRESS IN PREPARATION TECHNOLOGY AND APPLICATION OF NANO-ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 14-22. doi: 10.13205/j.hjgc.202009003 |
[11] | LV Wen, JIA Jin-wei, ZHANG Shao-fei, ZHANG Fan, SONG Qiang, GU Qiu-xiang, SHU Xin-qian. INFLUENCE OF STEEL SLAG ON PYROLYSIS OF OIL TANK BOTTOM SLUDGE IN BEIJING-TIANJIN-HEBEI REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 169-176. doi: 10.13205/j.hjgc.202010027 |
[12] | HUANG Xiang-yun, HE Wen-yan, LI Jin-xin, YANG Jin-yan. ADSORPTION AND FIXATION OF VANADIUM IN SOIL BY SEPIOLITES MODIFIED BY ACID-THERMAL ACTIVATION, SULFHYDRYL ORGANISATION AND HYDROXYL IRON-ALUMINUM PILLARING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 147-152. doi: 10.13205/j.hjgc.202002020 |
[15] | Peng Ben Yue Changsheng Huang Shishuo Zhang Mei Guo Min Hu Tianqi, . CO2 MODIFICATION AND THERMODYNAMIC PROPERTY OF HOT STEEL SLAG[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 100-102. doi: 10.13205/j.hjgc.201504021 |
[17] | Zhang Xiaoxu, Zhang Hongyu, Li Guoxue, . EFFECT OF ADDITIVE QUANTITY OF STALKS ON H2 S AND NH3 EMISSION DURING KITCHEN WASTE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 95-99. doi: 10.13205/j.hjgc.201501022 |
[18] | THE RESEARCH PROGRESS ON THE REMOVAL OF ORGANIC POLLUTANTS BY Ti-BASED LEAD DIOXIDE ANODE[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 1-4. doi: 10.13205/j.hjgc.201412001 |
1. | 李茂辉,陆有军,楚京军,刘亚娟,张同生,王伟,陈志杰. 钢渣胶凝活性激发的研究进展. 混凝土与水泥制品. 2025(02): 112-116 . ![]() | |
2. | 张若涵,李潼,姚璐,栗晓静,邱志莹,郭红霞. 高温改性对钢渣源钙基吸附剂性能的影响. 辽宁化工. 2025(02): 241-243+287 . ![]() | |
3. | 刘鹏耀,张喜,李国鹏,李俊国,唐国章. 冷态钢渣水化活性激发研究现状及展望. 华北理工大学学报(自然科学版). 2024(01): 52-58 . ![]() | |
4. | 徐洪涛,徐培蓁,朱亚光,辛志鹏,万小梅. 钢渣透水砖的制备与性能研究. 青岛理工大学学报. 2024(01): 66-72 . ![]() | |
5. | 马超,姚兆龙,杨钊,王新龙,蒋道东. 钢渣粉与硅灰复掺水泥基材料的流变、早期水化热与强度. 长江科学院院报. 2024(06): 164-170 . ![]() | |
6. | 李茂辉,陆有军,楚京军,刘亚娟,张同生. 激发材料对碱性钢渣替代水泥早期强度规律研究. 粉煤灰综合利用. 2024(03): 25-29+39 . ![]() | |
7. | 刘志华,宁贝瑶,荣辉,王安辉,张艳芳,冯阳,刘德娥,韩兆攀,岳昌盛,戴骁蒙. 微生物改性影响钢渣安定性效果及其在道路工程中的应用. 环境工程. 2024(07): 208-216 . ![]() | |
8. | 杨光,杨志强,石磊,郭俊祥,王飞,代鑫. 钢渣资源化利用与实践. 冶金能源. 2024(05): 37-40+59 . ![]() | |
9. | 卿三成,王昕,潘社卫,薛广海,王永光,万用波,渠迎锋,卢毅. 掺加磷石膏-钢渣对水稳层强度和固废利用影响. 有色金属(矿山部分). 2024(05): 198-205 . ![]() | |
10. | 王丽艳,蒋飞,庄海洋,王炳辉,张雷,李明. 考虑水化期影响的橡胶-钢渣填料动力特性与微观分析. 岩土力学. 2024(S1): 53-62 . ![]() | |
11. | 刘峰,吕文明,邢洋,王晓杰. 水泥、粉煤灰稳定钢渣铁矿废石混合料路用性能试验研究. 辽宁科技学院学报. 2024(04): 5-9 . ![]() | |
12. | 叶晨峰. 聚丙烯酰胺对钢渣混凝土性能的影响. 混凝土与水泥制品. 2023(08): 88-92 . ![]() | |
13. | 陈栋,刘德楼,倪晓东. 聚氨酯改性钢渣沥青混合料性能研究. 交通世界. 2023(26): 20-22 . ![]() | |
14. | 刘营,涂福运,李瑞娇,张红日. 掺钢渣集料的沥青混合料路用性能试验研究. 西部交通科技. 2023(08): 4-7 . ![]() | |
15. | 赵树海,金永丽,郭嘉诚,张凯旋,蒋锦韬. 低钙钢渣中钙、铁分离及回收利用. 中国冶金. 2023(10): 125-132 . ![]() | |
16. | 安然,陈欣,张先伟,王港,高浩东. 单轴加载过程中钢渣稳定土细观裂隙的动态演化特征. 岩土力学. 2023(S1): 300-308 . ![]() | |
17. | 卫煜,陈平,明阳,骆俊辉,张革芬,吴勇. 超细高活性矿物掺合料对UHPC水化和收缩性能的影响. 硅酸盐通报. 2022(02): 461-468 . ![]() | |
18. | 任旭,王会刚,吴跃东,焦强,岳昌盛,彭犇. “双碳”目标下钢渣处理及资源化利用探讨. 环境工程. 2022(08): 220-224 . ![]() | |
19. | 张承业,李红明,兰素恋. 不同钢渣砂掺量的水泥稳定基层试验研究. 西部交通科技. 2022(07): 7-9+39 . ![]() | |
20. | 王会刚,吴龙,郝以党,彭犇,岳昌盛,杨增奎. 我国钢渣热闷处理技术及装备化进展. 河北冶金. 2022(09): 6-9+14 . ![]() | |
21. | 李鹏,邓覃浩,邹均芳,甘有为. 钢渣重金属元素的浸出行为与生态风险评估. 长沙理工大学学报(自然科学版). 2022(03): 137-148 . ![]() | |
22. | 杜晓燕,龙红明,刘秀玉,朱庆明,韩伟胜. 钢渣改性用于烟气脱硫研究进展. 无机盐工业. 2022(11): 39-44 . ![]() | |
23. | 黄桂萍,韩祖丽,谭毅. 掺钢渣细集料水泥稳定碎石混合料路用性能试验研究. 西部交通科技. 2022(10): 7-12 . ![]() | |
24. | 郝帅,罗果萍,卢元元,柴轶凡,宋巍,安胜利. 钢渣改性与固碳研究现状及展望. 烧结球团. 2022(06): 31-38+153 . ![]() | |
25. | 王伟杰,金会心,张延玲,毛小浩,郭育良. 含铬固废的资源化处理及循环利用研究进展. 矿产综合利用. 2022(05): 64-70 . ![]() | |
26. | 赵宝军,吴琛,王俊,谭鹏,孔德智,陈美祝. 钢渣集料在高速公路水泥碎石基层中的应用研究. 建材世界. 2021(03): 11-13 . ![]() | |
27. | 吴燕开,乔晓龙,李丹丹,韩天,苗盛瑶,曹玉鹏. 干湿循环下钢渣粉水泥改良膨胀土室内试验研究. 西安建筑科技大学学报(自然科学版). 2021(03): 319-329 . ![]() | |
28. | 吴旻,谢胜华,葛根旺. 碱激发钢渣矿渣复合基层材料的强度特性及微观机制. 硅酸盐通报. 2021(08): 2640-2646 . ![]() | |
29. | 高颖,王伟赫,陈萌,郭庆林,朱玉风. 钢渣体积膨胀行为及改性方法研究进展. 科学技术与工程. 2021(33): 14040-14048 . ![]() |