Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DENG Qing-hua, ZHANG Jian, XIAN-Ping, FANG Qing, MENG Zheng-cheng. IMPROVING ANAEROBIC DIGESTIBILITY OF SLUDGE PRETREATED BY THERMAL HYDROLYSIS AND BANANA STRAW ADDED[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 144-149. doi: 10.13205/j.hjgc.202005025
Citation: DENG Qing-hua, ZHANG Jian, XIAN-Ping, FANG Qing, MENG Zheng-cheng. IMPROVING ANAEROBIC DIGESTIBILITY OF SLUDGE PRETREATED BY THERMAL HYDROLYSIS AND BANANA STRAW ADDED[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 144-149. doi: 10.13205/j.hjgc.202005025

IMPROVING ANAEROBIC DIGESTIBILITY OF SLUDGE PRETREATED BY THERMAL HYDROLYSIS AND BANANA STRAW ADDED

doi: 10.13205/j.hjgc.202005025
  • Received Date: 2019-09-23
  • The anaerobic biodegradability and methane yield of the low organic municipal sludge could be significantly improved on anaerobic co-digestion, by combing banana straw with high temperature thermal hydrolysis pretreatment (HTHP). In the combining system of anaerobic co-digestion and HTHP, the methane yield of municipal sludge, banana straw and their mixture were 388, 372, 537mL/gVS, respectively, which showed the significant synergistic effect. In their own optimal pretreatment condition of sludge, banana straw and their mixture, the T80 was 12, 19, 17 days, respectively, which could be represented as hydraulic retention time of anaerobic digestion; SCOD dissolution ratio was respectively 14.4, 2.8, and 5.9 times of those before pretreatment; SCOD removal rate was 93.7%, 89.8% and 94.5% after anaerobic digestion, and the removal rate of VS was 48.4%, 48.8% and 59.2%, respectively. The concentration of soluble protein, VFA and soluble polysaccharide were increased significantly, which was 14.5, 5.1 and 8.2 times of that before HTTP, and the removal rate was 94.4%, 94.9% and 95.2% in the subsequent anaerobic digestion stage, which was slightly higher than single treatment.
  • 中华人民共和国住房和城乡建设部. 2017年城乡建设统计年鉴[R]. http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/jstjnj/index.html. [2019.01.24

    ].
    LIU X R, XU Q X, WANG D B,et al. Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: performance, mechanisms and applications[J]. Bioresource Technology,2018,268: 230-236.
    CARRōRE H, DUMAS C, BATTIMELLI A, et al. Pretreatment methods to improve sludge anaerobic degradability: a review[J]. Journal of Hazardous Materials, 2010, 183(1/2/3):1-15.
    XUE Y G, LIU H J, CHEN S S, et al. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high-solid sludge[J]. Chemical Engineering Journal, 2015, 264:174-180.
    宋晓雅. 污泥热水解厌氧消化与常规厌氧消化的运行比较[J]. 给水排水, 2019,45(3):26-30.
    BÁRBARA R, BANKS C J, HEAVEN S. Biochemical methane potential of winter wheat (Triticum aestivum L.): Influence of growth stage and storage practice[J]. Bioresource Technology, 2010, 101(21):8179-8184.
    YUSUF M O L, IFY N L. The effect of waste paper on the kinetics of biogas yield from the co-digestion of cow dung and water hyacinth[J]. Biomass and Bioenergy, 2011, 35(3):1345-1351.
    PARKIN G F, OWEN W F. Fundamentals of anaerobic digestion of waste sludges[J]. Journal of Environmental Engineering, 1986,12(5):867-920.
    贺延龄. 废水的厌氧生物处理[M]. 北京:中国轻工业出版社, 1998:536-538.
    国家环境保护总局. 《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002:216-219.
    LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the Folin phenol reagent[J]. Journal of Biological Chemistry, 1951, 193(1):265-275.
    任南琪,王爱杰. 厌氧生物技术原理与应用[M]. 北京:化学工业出版社,2004:315-317.
    DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3):350-356.
    ZHANG J, WANG S F, LANG S G, et al. Kinetics of combined thermal pretreatment and anaerobic digestion of waste activated sludge from sugar and pulp industry[J]. Chemical Engineering Journal, 2016, 295:131-138.
    周孟津, 张榕林, 蔺金印. 沼气实用技术[M]. 北京:化学工业出版社, 2004:1-15.
    PALMOWSKI L M, MVLLER J A. Influence of the size reduction of organic waste on their anaerobic digestion[J]. Water Science and Technology, 2000, 41(3):155-162.
    KIM D, LEE K, PARK K Y. Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment[J]. International Biodeterioration & Biodegradation, 2015, 101:42-46.
    PANG Y Z, LIU Y P, LI X J, et al. Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment[J]. Energy & Fuels, 2008, 22(4):2761-2766.
    YENIGVN O, DEMIREL B. Ammonia inhibition in anaerobic digestion: a review[J]. Process Biochemistry, 2013, 48(5/6):901-911.
    ZHANG J S, XUE Y G, ESHTIAGHI N, et al. Evaluation of thermal hydrolysis efficiency of mechanically dewatered sewage sludge via rheological measurement[J]. Water Research, 2017, 116:34-43.
  • Relative Articles

    [1]YIN Leyi, HUANG Guoxin, NIU Haobo, CHEN Jian, XIE Yueqing, YANG Lihu, LIU Ling. GROUNDWATER POLLUTION DYNAMIC RISK ASSESSMENT BASED ON NUMERICAL SIMULATION AND RISK SCREENING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 199-205. doi: 10.13205/j.hjgc.202401026
    [2]LIU Mingkun, DANG Xiaoqing, XIE Dongming, LE Wenyi, FENG Xiaofeng, ZHENG Huachun, LI Shijie, WANG Zhijian. INFLUENCE OF ELECTRODE CONFIGURATION AND PARAMETERS ON ELECTRIC FIELD AND DUST REMOVAL PERFORMANCE OF POROUS ELECTRODE ESP[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 122-130. doi: 10.13205/j.hjgc.202403015
    [3]YAN Cailian, LIN Xiuli, HU Longji, LIU Jingxian. NUMERICAL SIMULATION ANALYSIS OF FILTRATION VELOCITY DISTRIBUTION OF CYLINDRICAL AND PLEATED FILTER BAGS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 225-232. doi: 10.13205/j.hjgc.202403028
    [4]DU Chuan, LI Houen, CHEN Suyun. APPLICATION OF NUMERICAL SIMULATION TECHNOLOGY IN EXTRACTION AND TREATMENT OF POLLUTED GROUNDWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 102-108. doi: 10.13205/j.hjgc.202307014
    [5]ZHANG You, ZHAO Tingting, DU Ranli, LI Huashan, KONG Xiangcheng, XUE Jianliang. NUMERICAL SIMULATION ANALYSIS OF FLOW CHARACTERISTICS OF DESCENDING FILM EVAPORATION OF SALT-CONTAINING WASTEWATER IN COAL CHEMICAL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 17-22,31. doi: 10.13205/j.hjgc.202306003
    [6]LI Jian, WU Chunmao, QI Zhanfeng. NUMERICAL SIMULATION OF AIRFLOW DISTRIBUTION AND STRUCTURAL OPTIMIZATION IN AN ELECTROSTATIC OIL MIST PURIFIER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 202-208. doi: 10.13205/j.hjgc.202308026
    [7]LI Debo, CHEN Zhaoli, CHEN Zhihao, FENG Yongxin, HUANG Zigan, WEI Chen, MA Xiaoqian. NUMERICAL SIMULATION OF MIXED FIRING OF AGED REFUSE AND AIR DISTRIBUTION OPTIMIZATION IN A MSW INCINERATION FURNACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 113-119. doi: 10.13205/j.hjgc.202211016
    [8]ZHANG Yun. ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 197-204,217. doi: 10.13205/j.hjgc.202205029
    [9]ZHENG Kaixuan, HUANG Junlong, LUO Xingshen, WANG Hongtao, CHEN Tan. APPLICATION PROGRESS OF NUMERICAL SIMULATION IN PERMEABLE REATIVE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 22-30. doi: 10.13205/j.hjgc.202206003
    [10]LI Wenjun, ZHENG Chenghang, WANG Yifan, ZHAO Zhongyang, LIU Chang, WU Weihong, LIU Shaojun. NUMERICAL SIMULATION ON SPRAY EVAPORATION PROCESS FOR SMALL-SCALE QUENCH TOWER IN LIMITED SPACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 50-56,78. doi: 10.13205/j.hjgc.202204008
    [11]SHUAI Qifan, LU Jiangang, LI Jiansheng. ANALYSIS ON STRUCTURAL SIMULATION, OPTIMIZATION AND APPLICATION EFFECT OF A REGENERATIVE THERMAL OXIDIZER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 146-153. doi: 10.13205/j.hjgc.202202023
    [12]LIU Pengyu, LI Debo, LIU Yanfeng, QUE Zhengbin, MIAO Jianjie, CHEN Zhaoli. RESEARCH PROGRESS ON NUMERICAL SIMULATION OF SCR DENITRIFICATION SYSTEM IN A COAL-FIRED POWER PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 224-232. doi: 10.13205/j.hjgc.202210029
    [13]HAN Xiao-dong, SUN Ye. SITE SELECTION OF WASTE TRANSFER STATION BASED ON NUMERICAL SIMULATIONS OF ODOR DISPERSION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 130-135. doi: 10.13205/j.hjgc.202103018
    [14]NIE Peng-fei, GAO Zhi, MENG De-run, ZHANG Hong-bo, ZHANG Qing. APPLICATION OF CFD IN A DOUBLE STAGE DESULFURIZATION SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 119-124,130. doi: 10.13205/j.hjgc.202108016
    [15]ZHOU Chuan, WU Qi-rong, YU Jiang-tao, QIN Fu-chu. NUMERICAL SIMULATION FOR FGD WASTEWATER EVAPORATION IN THE FLUE DUCT OF A 2×350 MW COAL-FIRED UNIT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 96-101. doi: 10.13205/j.hjgc.202005017
    [16]ZHAO Kun, LI Ruo-hua, CHENG Wen-long, YANG Yuan-ping, YUE Shu-bo. NUMERICAL SIMULATION STUDY ON ENVIRONMENTAL IMPACT OF SEWAGE DISCHARGE ON ESTUARY WATER FUNCTIONAL AREA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 33-40. doi: 10.13205/j.hjgc.202010006
    [17]QU Guang-fei, AN Zhi, NING Ping, XIE Ruo-song. GENERAL SURVEY ON APPLICATION OF NUMERICAL SIMULATION IN SEWAGE BIOLOGICAL TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 99-104,179. doi: 10.13205/j.hjgc.202003017
    [18]Mao Rui, Liu Genfan, Deng Xiang, Fan Ning. NUMERICAL SIMULATION STUDY ON STRUCTURAL DEVELOPMENT OF BAG FILTER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 77-81. doi: 10.13205/j.hjgc.201503016
    [19]Ding Zhijiang Lu Mingyuan Xiao Lichun, . NUMERICAL SIMULATION METHOD OF GAS FLOW DISTRIBUTION IN ELECTROSTATIC PRECIPITATOR FOR CONVERTER GAS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 92-96. doi: 10.13205/j.hjgc.201504019
  • Cited by

    Periodical cited type(7)

    1. 王国栋. 初雨截流的分流制排水体制下污水处理提质增效工程设计. 水利技术监督. 2025(03): 206-209+285 .
    2. 罗艳,曾祥国,高艳,刘欢,李志一,杨婷婷. 排水管网污水BOD与COD指标的相关性研究. 中国设备工程. 2025(04): 110-112 .
    3. 张勇,赖莉. 系统化监测在农村生活污水处理提质增效中的应用. 价值工程. 2024(22): 140-143 .
    4. 王宇龙,高萌. 自动监测技术分析聚氯乙烯生产废水的处理方法. 塑料助剂. 2024(04): 40-43+59 .
    5. 朱艳旭,张春杰,祝佳佳,钟振兴. 智慧排水管网系统建设——以豫南某市中心城区为例. 城市道桥与防洪. 2024(08): 101-104+17 .
    6. 朱恩国. 深圳市龙岗区排水管网提质增效方案设计与实践研究. 工程技术研究. 2024(18): 181-183 .
    7. 王小星. 污水处理过程中污染物监测方法的优化研究. 生态与资源. 2024(12): 25-27 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.6 %FULLTEXT: 12.6 %META: 83.0 %META: 83.0 %PDF: 4.4 %PDF: 4.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.1 %其他: 9.1 %其他: 0.6 %其他: 0.6 %China: 1.9 %China: 1.9 %上海: 1.9 %上海: 1.9 %东莞: 3.8 %东莞: 3.8 %临汾: 0.3 %临汾: 0.3 %兰州: 0.3 %兰州: 0.3 %北京: 3.8 %北京: 3.8 %南京: 0.9 %南京: 0.9 %南宁: 0.3 %南宁: 0.3 %南昌: 0.6 %南昌: 0.6 %南通: 0.6 %南通: 0.6 %厦门: 0.6 %厦门: 0.6 %合肥: 0.6 %合肥: 0.6 %唐山: 0.3 %唐山: 0.3 %大同: 0.3 %大同: 0.3 %大连: 0.3 %大连: 0.3 %天津: 1.3 %天津: 1.3 %太原: 0.6 %太原: 0.6 %宁波: 0.3 %宁波: 0.3 %宜春: 0.6 %宜春: 0.6 %宣城: 0.3 %宣城: 0.3 %常德: 0.3 %常德: 0.3 %弗吉: 0.3 %弗吉: 0.3 %张家口: 0.6 %张家口: 0.6 %成都: 0.6 %成都: 0.6 %扬州: 0.3 %扬州: 0.3 %拉贾斯坦邦: 0.3 %拉贾斯坦邦: 0.3 %攀枝花: 0.3 %攀枝花: 0.3 %无锡: 1.3 %无锡: 1.3 %昆明: 1.6 %昆明: 1.6 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.6 %杭州: 1.6 %榆林: 0.3 %榆林: 0.3 %武汉: 1.3 %武汉: 1.3 %沈阳: 0.9 %沈阳: 0.9 %沧州: 0.9 %沧州: 0.9 %济源: 0.3 %济源: 0.3 %海口: 0.3 %海口: 0.3 %淄博: 0.3 %淄博: 0.3 %湖州: 0.3 %湖州: 0.3 %潍坊: 0.9 %潍坊: 0.9 %烟台: 0.3 %烟台: 0.3 %石家庄: 0.3 %石家庄: 0.3 %芒廷维尤: 30.3 %芒廷维尤: 30.3 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.9 %苏州: 0.9 %衢州: 0.6 %衢州: 0.6 %西宁: 8.8 %西宁: 8.8 %西安: 2.5 %西安: 2.5 %西雅图: 0.3 %西雅图: 0.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 2.2 %运城: 2.2 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.3 %郑州: 0.3 %里昂: 6.6 %里昂: 6.6 %重庆: 0.6 %重庆: 0.6 %金华: 0.3 %金华: 0.3 %长治: 0.3 %长治: 0.3 %青岛: 0.3 %青岛: 0.3 %其他其他China上海东莞临汾兰州北京南京南宁南昌南通厦门合肥唐山大同大连天津太原宁波宜春宣城常德弗吉张家口成都扬州拉贾斯坦邦攀枝花无锡昆明晋城朝阳杭州榆林武汉沈阳沧州济源海口淄博湖州潍坊烟台石家庄芒廷维尤芝加哥苏州衢州西宁西安西雅图贵阳运城遵义邯郸郑州里昂重庆金华长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (114) PDF downloads(4) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return