Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 38 Issue 5
Aug.  2020
Turn off MathJax
Article Contents
DENG Qing-hua, ZHANG Jian, XIAN-Ping, FANG Qing, MENG Zheng-cheng. IMPROVING ANAEROBIC DIGESTIBILITY OF SLUDGE PRETREATED BY THERMAL HYDROLYSIS AND BANANA STRAW ADDED[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 144-149. doi: 10.13205/j.hjgc.202005025
Citation: DENG Qing-hua, ZHANG Jian, XIAN-Ping, FANG Qing, MENG Zheng-cheng. IMPROVING ANAEROBIC DIGESTIBILITY OF SLUDGE PRETREATED BY THERMAL HYDROLYSIS AND BANANA STRAW ADDED[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 144-149. doi: 10.13205/j.hjgc.202005025

IMPROVING ANAEROBIC DIGESTIBILITY OF SLUDGE PRETREATED BY THERMAL HYDROLYSIS AND BANANA STRAW ADDED

doi: 10.13205/j.hjgc.202005025
  • Received Date: 2019-09-23
  • The anaerobic biodegradability and methane yield of the low organic municipal sludge could be significantly improved on anaerobic co-digestion, by combing banana straw with high temperature thermal hydrolysis pretreatment (HTHP). In the combining system of anaerobic co-digestion and HTHP, the methane yield of municipal sludge, banana straw and their mixture were 388, 372, 537mL/gVS, respectively, which showed the significant synergistic effect. In their own optimal pretreatment condition of sludge, banana straw and their mixture, the T80 was 12, 19, 17 days, respectively, which could be represented as hydraulic retention time of anaerobic digestion; SCOD dissolution ratio was respectively 14.4, 2.8, and 5.9 times of those before pretreatment; SCOD removal rate was 93.7%, 89.8% and 94.5% after anaerobic digestion, and the removal rate of VS was 48.4%, 48.8% and 59.2%, respectively. The concentration of soluble protein, VFA and soluble polysaccharide were increased significantly, which was 14.5, 5.1 and 8.2 times of that before HTTP, and the removal rate was 94.4%, 94.9% and 95.2% in the subsequent anaerobic digestion stage, which was slightly higher than single treatment.
  • loading
  • 中华人民共和国住房和城乡建设部. 2017年城乡建设统计年鉴[R]. http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/jstjnj/index.html. [2019.01.24

    ].
    LIU X R, XU Q X, WANG D B,et al. Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: performance, mechanisms and applications[J]. Bioresource Technology,2018,268: 230-236.
    CARRōRE H, DUMAS C, BATTIMELLI A, et al. Pretreatment methods to improve sludge anaerobic degradability: a review[J]. Journal of Hazardous Materials, 2010, 183(1/2/3):1-15.
    XUE Y G, LIU H J, CHEN S S, et al. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high-solid sludge[J]. Chemical Engineering Journal, 2015, 264:174-180.
    宋晓雅. 污泥热水解厌氧消化与常规厌氧消化的运行比较[J]. 给水排水, 2019,45(3):26-30.
    BÁRBARA R, BANKS C J, HEAVEN S. Biochemical methane potential of winter wheat (Triticum aestivum L.): Influence of growth stage and storage practice[J]. Bioresource Technology, 2010, 101(21):8179-8184.
    YUSUF M O L, IFY N L. The effect of waste paper on the kinetics of biogas yield from the co-digestion of cow dung and water hyacinth[J]. Biomass and Bioenergy, 2011, 35(3):1345-1351.
    PARKIN G F, OWEN W F. Fundamentals of anaerobic digestion of waste sludges[J]. Journal of Environmental Engineering, 1986,12(5):867-920.
    贺延龄. 废水的厌氧生物处理[M]. 北京:中国轻工业出版社, 1998:536-538.
    国家环境保护总局. 《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002:216-219.
    LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the Folin phenol reagent[J]. Journal of Biological Chemistry, 1951, 193(1):265-275.
    任南琪,王爱杰. 厌氧生物技术原理与应用[M]. 北京:化学工业出版社,2004:315-317.
    DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3):350-356.
    ZHANG J, WANG S F, LANG S G, et al. Kinetics of combined thermal pretreatment and anaerobic digestion of waste activated sludge from sugar and pulp industry[J]. Chemical Engineering Journal, 2016, 295:131-138.
    周孟津, 张榕林, 蔺金印. 沼气实用技术[M]. 北京:化学工业出版社, 2004:1-15.
    PALMOWSKI L M, MVLLER J A. Influence of the size reduction of organic waste on their anaerobic digestion[J]. Water Science and Technology, 2000, 41(3):155-162.
    KIM D, LEE K, PARK K Y. Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment[J]. International Biodeterioration & Biodegradation, 2015, 101:42-46.
    PANG Y Z, LIU Y P, LI X J, et al. Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment[J]. Energy & Fuels, 2008, 22(4):2761-2766.
    YENIGVN O, DEMIREL B. Ammonia inhibition in anaerobic digestion: a review[J]. Process Biochemistry, 2013, 48(5/6):901-911.
    ZHANG J S, XUE Y G, ESHTIAGHI N, et al. Evaluation of thermal hydrolysis efficiency of mechanically dewatered sewage sludge via rheological measurement[J]. Water Research, 2017, 116:34-43.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (98) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return