Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHOU Yu-qi, CAO Qi, XU Jun-chao, LIU Chang-qing, ZHUO Gui-hua, CHEN Jian-yong, ZHENG Yu-yi. INFLUENCE OF DIFFERENT SOURCE SUBSTRATE SYSTEMS ON METHANOGENESIS OF RESIDUE FROM ANAEROBIC FERMENTATIVE HYDROGEN PRODUCTION USING COMBINED SLUDGE AND FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 123-130. doi: 10.13205/j.hjgc.202109018
Citation: WANG Wen-xuan, CHEN Xiao-tong, ZHANG Yu-chen, WU Guang-yi, LIAO Yu-liang, YANG Jin-yan. SIMULATION EXPERIMENT OF TRANSPORT AND TRANSFORMATION OF WATER-SOLUBLE Cr(Ⅵ) IN SOIL UNDER THE ACTION OF MICROORGANISM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 40-46. doi: 10.13205/j.hjgc.202006007

SIMULATION EXPERIMENT OF TRANSPORT AND TRANSFORMATION OF WATER-SOLUBLE Cr(Ⅵ) IN SOIL UNDER THE ACTION OF MICROORGANISM

doi: 10.13205/j.hjgc.202006007
  • Received Date: 2020-03-21
  • The development of modern industry caused Cr(Ⅵ) soil pollution increasingly prominent. The researches on the prevention and control of soil pollution with Cr(Ⅵ) attracted more and more attention. This study selected the low-risk plot soil as the experiment material. Based on soil column leaching experiments, the migration and transformation of water-soluble Cr(Ⅵ) in the soil under the action of mixed Bacillus were investigated. The results showed that the water-soluble Cr(Ⅵ) migration in soil was motivated by the migration of water in soil. In the control group, the migration of water-soluble Cr(Ⅵ) in the soil showed a trend of decreasing concentration with increasing soil depth; in the mixed Bacillus treatment group, Bacillus hindered water-soluble Cr(Ⅵ) migration in the early stage(0~10 days), but had little effect in the middle and later stage(10~30 days). During the migration process, the effect of mixing Bacillus made soil water soluble Cr(Ⅵ) concentration reduced. For example, after 30 days of soil column leaching, the water-soluble Cr(Ⅵ) concentration of the 175-H soil column compared with the 175-D soil column at the depths of 5, 10, 15, 20 cm were decreased by 3.55, 2.03, 1.87, 1.31 mg/kg. At the same time, the leaching of Cr(Ⅵ)-containing solution increased the relative abundance of chromium-resistant bacteria in the soil, such as Bacillus.
  • 考庆君,吴坤.铬的生物学作用及毒性研究进展[J].中国公共卫生,2004,20(11):1398-1400.
    陈英旭,何增耀,吴建平.土壤中铬的形态及其转化[J].环境科学,1994,15(3):53-56.
    KRISHNA K R, PHILIP L. Bioremediation of Cr(Ⅵ) in contaminated soils[J]. Journal of Hazardous Materials, 2005, 121(1/2/3): 109-117.
    张聪慧,申向东,邹欲晓.土壤中Cr(Ⅵ)离子在低温环境中的迁移规律研究[J].农业环境科学学报,2019,38(9):2138-2145.
    王成文,许模,张俊杰,等.土壤pH和Eh对重金属铬(Ⅵ)纵向迁移及转化的影响[J].环境工程学报,2016,10(10):6035-6041.
    张蕊. Cr(Ⅵ)在土壤中迁移转化影响因素研究及风险评价[D].长春:吉林大学,2013.
    魏蓝. 土壤微生物对六价铬的还原及稳定化效果研究[D].苏州:苏州科技大学,2017.
    苏长青,李立清,杨志辉,等.好氧条件下铬污染土壤中Cr(Ⅵ)的土著微生物还原[J].中国有色金属学报(英文版),2019,29(6):1304-1311.
    肖伟,王磊,张思维,等.Cr(Ⅵ)还原细菌Bacillus cereus S5.4的筛选鉴定及还原特性研究[J].工业微生物,2007,37(6):1-6.
    朱培蕾,焦仕林,姜朴,等.Cr(Ⅵ)还原菌Cr4-1的鉴定和还原影响因素的优化[J].卫生研究,2015,44(2):201-205

    ,210.
    郝孔利,张杰.细菌和真菌去除Cr(Ⅵ)机理的研究进展[J].环境科技,2018,31(6):66-70.
    赵虎彪. 铁系物还原稳定技术在铬污染土壤修复中的应用研究[D].杭州:浙江大学,2019.
    GUAN X H, DONG H R, MA J, et al. Simultaneous removal of chromium and arsenate from contaminated groundwater by ferrous sulfate: batch uptake behavior[J].Journal of Environmental Sciences, 2011, 23(3):372-380.
    ACHAL V, KUMARI D, PAN X. Bioremediation of chromium contaminated soil by a brown-rot fungus, Gloeophyllum sepiarium[J].Research Journal of Microbiology, 2011, 6(7):166-171.
    DAS S, MISHRA J, DAS S K, et al. Investigation on mechanism of Cr (Ⅵ) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil[J].Chemosphere, 2014, 96(2):112-121.
    BESTAWY E E, HELMY S, HUSSIEN H, et al. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria[J].Applied Water Science, 2013, 3(1):181-192.
    孙慧慧. 污泥—豆渣联合修复铬污染土壤研究[D].重庆:重庆大学,2018.
    INTHAVONGXAI PHOUNGERN(金山). 厌氧污泥、餐厨垃圾与硫酸亚铁协同处理铬污染土壤实验研究[D].南宁:广西大学,2018.
    中华人民共和国农业部.土壤检测第6部分:土壤有机质的测定:NY/T 1121.6—2006[S].北京:中国农业出版社, 2006.
    BURTON E D, CHOPPALA G, KARIMIAN N, et al. A new pathway for hexavalent chromium formation in soil: fire-induced alteration of iron oxides[J]. Environmental Pollution, 2019,247: 618-625.
    中华人民共和国国家标准GB 7467—87水质三价铬的测定二苯酰二肼分光光度法[S].北京:国家标准出版社, 2012.
    LI X Z, RUI J D, MAO Y J, et al. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar[J]. Soil Biology and Biochemistry, 2014,68: 392-401.
    LOZUPONE C A, KNIGHT R. UniFrac: a new phylogenetic method for comparing microbial communities[J]. Applied and Environmental Microbiology, 2005,71: 8228-8235.
    MAGOČ T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011,27(21): 2957-2963.
    RUI J P, LI J B, ZHANG S H, et al. The core populations and co-occurrence patterns of prokaryotic communities in household biogas digesters[J]. Biotechnology for Biofuels, 2015,8: 158.
    李晶晶,彭恩泽.综述铬在土壤和植物中的赋存形式及迁移规律[J].工业安全与环保,2005,31(3):31-33.
    容群,罗栋源,边鹏洋,等.土壤中铬的迁移转化研究进展[J].四川环境,2018,37(2):156-160.
    傅臣家,刘洪禄,吴文勇,等.六价铬在土壤中吸持和迁移的试验研究[J].灌溉排水学报,2008,27(2):9-13

    ,42.
    应珊珊. 基于贝叶斯方法的土壤溶质迁移转化反演研究[D].杭州:浙江大学,2018.
    裴青宝. 红壤土壤水分溶质运移特性及滴灌关键技术研究[D].西安:西安理工大学,2018.
    何敏艳. 高效铬还原菌Bacillus cereus SJ1和Lysinibacillus fusiformis ZC1的铬还原特性和全基因组序列分析[D].武汉:华中农业大学,2010.
    焦仕林,朱培蕾,姜朴,等.蜡样芽孢杆菌还原六价铬效果分析[J].中国公共卫生,2016,32(10):1326-1329.
    张玥,岳蕙颖,王进.一株耐铬细菌的除铬研究[J].广东化工,2015,42(24):80-81.
    PRIESTER J H,OLSON S G,WEBB S M, et al. Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms[J]. Applied and Environmental Microbiology,2006,72(3):1988-1996.
    DOGAN N M,KANTAR C,GULCAN S, et al. Chromium(Ⅵ) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(Ⅵ) contamination[J]. Environmental Science & Technology,2011,45(6):2278-2285.
    肖文丹,叶雪珠,孙彩霞,等.铬耐性菌对土壤中六价铬的还原作用[J].中国环境科学,2017,37(3):1120-1129.
  • Relative Articles

    [1]YANG Mengxia, SHEN Pengfei, CHEN Xiaohuan. ANALYSIS AND SUGGESTION OF PRODUCT-ORIENTED ANAEROBIC FERMENTATION OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 140-146. doi: 10.13205/j.hjgc.202410017
    [2]WANG Jinghui, LIU Lu, ZHENG Chengzhi, CHEN Yifan, GUO Ze. ADVANCEMENTS IN PROCESS SIMULATION OF ANAEROBIC FERMENTATION HYDROGEN PRODUCTION FROM SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 142-149. doi: 10.13205/j.hjgc.202408017
    [3]LIAO Jie, XIE Wei, LIU Chaoxiang, FAN Hongyong. EFFECTS OF INITIAL ALKALINITY AND TEMPERATURE ON ANAEROBIC FERMENTATION PROCESS OF PIGGERY WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 53-59,65. doi: 10.13205/j.hjgc.202302008
    [4]CHEN Zhengrui, ZHANG Shi, YIN Linlin, ZHANG Jun, DONG Jiankai, JIN Tao, ZHOU Hong, QU Peng, FENG Jiazi, WANG Shutao. PROPERTIES OF ORGANIC MATTER IN ANAEROBIC FERMENTATION LEACHATE FROM A DOMESTIC WASTE INCINERATION POWER PLANT IN THE COLD REGION IN NORTHERN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 97-102. doi: 10.13205/j.hjgc.202303013
    [5]WANG Xinzi, WANG Pan, YANG Xinyu, LI Yingnan, REN Lianhai. EFFECT OF BIOCHAR-nZVI ON PERFORMANCE OF FOOD WASTE ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 154-161. doi: 10.13205/j.hjgc.202308019
    [6]WANG Xu-dong, LI Xian-guo, ZHANG Hai-qing, PAN Kang-hong, ZHANG Da-hai. EFFECT OF MEDIUM AND HIGH MOLECULAR WEIGHT POLYACRYLAMIDE ON PERFORMANCE OF SLUDGE ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 82-87. doi: 10.13205/j.hjgc.202205012
    [7]DING Zizhen, XU Xianbao, OUYANG Chuang, XUE Gang, LI Xiang. EFFECT OF BIOCHAR ON CAPROATE PRODUCTION DURING FOOD WASTE FERMENTATION AND THE MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 29-36. doi: 10.13205/j.hjgc.202212005
    [8]GONG Yabin, YAO Jiangang, TAN Jing. ANAEROBIC BIOGAS PRODUCTION EFFICIENCY OF FOOD WASTE AT THE MEDIUM TEMPERATURE AND INTERMEDIATE TEMPERATURE ZONE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 132-138. doi: 10.13205/j.hjgc.202203020
    [9]DONG Xinlei, LIN Qingshan, LIN Yanan, XI Shihao, CHENG Boyi, CHEN Lei, ZHANG Da, WANG Zongping, GUO Gang. EFFECTS OF ELECTROLYTES ON ACIDOGENIC FERMENTATION OF WASTE ACTIVATED SLUDGE FOR VOLATILE FATTY ACIDS PRODUCTION VIA ELECTROCHEMICAL PRETREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 71-78. doi: 10.13205/j.hjgc.202212010
    [10]CAO Qi, HE Yu-heng, ZHUO Gui-hua, LIU Chang-qing, CHEN Jian-yong, ZHENG Yu-yi. EFFECT OF INITIAL pH VALUE ON METHANE PRODUCTION FROM RESIDUE AFTER ANAEROBIC CO-FERMENTATIVE HYDROGEN PRODUCTION OF SEWAGE SLUDGE AND FOOD WASTE UNDER THERMOPHILIC OPERATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 150-157. doi: 10.13205/j.hjgc.202209020
    [11]ZHANG Tian-tian, GUAN Zheng-jun, ZHANG Yang-yang, YIN Heng. MICROBIAL FLORA STRUCTURE AND ITS DYNAMIC CHANGES DURING ANAEROBIC FERMENTATION OF FILTERED SWINE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 55-61. doi: 10.13205/j.hjgc.202108007
    [12]XU Wen-xuan, GUO Zhao-hui, XIAO Xi-yuan, PENG Chi, XIN Li-qing, TAO Ming-ming, HAN Liang-liang. ANAEROBIC FERMENTATION SLURRY RECYCLED FOR DEGRADATION OF HEAVY METAL-CONTAINING RICE STRAW[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 123-129. doi: 10.13205/j.hjgc.202101019
    [13]JING Xue, CHENG Jie-hong, KONG Feng, ZHANG Chun-yong, CHENG Qing-lin, HUANG Shou-qiang. EFFECT OF ADDED IRON ON ANAEROBIC DIGESTION PROCESS OF MUNICIPAL SLUDGE IN METHANE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 125-130. doi: 10.13205/j.hjgc.202102020
    [14]WU Fan, JIANG Hao, LI Ye-qing. ADVANCEMENTS IN PRODUCING MEDIUM CHAIN CARBOXYLIC ACIDS VIA ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 150-155,216. doi: 10.13205/j.hjgc.202108021
    [15]REN An-dong, ZHENG Yi, SUN Tian-zi, ZHAO Li-ya, WANG Pan, REN Lian-hai. EFFECT OF SLURRY RECIRCULATION TIME ON ANAEROBIC DIGESTION OF KITCHEN WASTE WITH HIGH SOLID CONTENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 159-165,140. doi: 10.13205/j.hjgc.202112024
    [16]LIU Xin-yuan, HU Wen-jia, OUYANG Fan, NIE Jia-min, WU Nan, YANG Fan, KONG Si-fang. BIOGAS PRODUCTION AND MICROBIAL COMMUNITY SUCCESSION DURING SEQUENCING BATCH ACCLIMATIZATION OF DIGESTED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 136-141,188. doi: 10.13205/j.hjgc.202103019
    [17]ZHOU Yu-qi, XU Jun-chao, ZHUO Gui-hua, CHEN Jian-yong, LIU Chang-qing. INFLUENCE OF SLUDGE INOCULATION VOLUME ON METHANOGENESIS OF RESIDUE FROM ANAEROBIC FERMENTATIVE HYDROGEN PRODUCTION USING COMBINED SLUDGE AND FOOD WASTE UNDER MEDIUM TEMPERATURE CONDITION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 144-149. doi: 10.13205/j.hjgc.202106021
    [18]ZHU Wen-bin, GAO Ming, YIN Zi-he, WU Chuan-fu, WANG Qun-hui. RESEARCH PROGRESS ON CAPROIC ACID PRODUCTION FROM ORGANIC WASTE BY ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 128-134. doi: 10.13205/j.hjgc.202001020
    [19]ZHANG Jian-wei, HUANG Tao, PENG Dao-ping, JIANG Shuai, XIA Yu-yang. GAS PRODUCTION PERFORMANCE OF RICE STRAW ANAEROBIC FERMENTATION BY CRYOGENIC FREEZING PRETREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 217-221. doi: 10.13205/j.hjgc.202008036
    [20]ZHANG Jing, ZHAO Jian-wei, SUN Ying-jie, WANG Ya-nan, XIN Ming-xue. EFFECT OF EMERGING POLLUTANTS ON PRODUCTION OF HYDROGEN FROM WASTE ACTIVATED SLUDGE ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 13-20. doi: 10.13205/j.hjgc.202008003
  • Cited by

    Periodical cited type(2)

    1. 夏大平,廖佳佳,陈振宏,陈曦,郭红玉,黄丹. 生物产氢余煤再产甲烷的有利因素研究. 煤田地质与勘探. 2024(03): 56-63 .
    2. 邹亚娜,臧越,王恺元,秦曦,甄广印,陆雪琴. 生物电催化调控污泥-餐厨垃圾协同厌氧产酸研究. 环境化学. 2023(01): 298-309 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.7 %FULLTEXT: 13.7 %META: 83.6 %META: 83.6 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 21.3 %其他: 21.3 %[]: 0.5 %[]: 0.5 %上海: 3.8 %上海: 3.8 %临汾: 0.5 %临汾: 0.5 %丽水: 0.5 %丽水: 0.5 %北京: 4.4 %北京: 4.4 %台州: 3.8 %台州: 3.8 %哈尔滨: 0.5 %哈尔滨: 0.5 %天津: 0.5 %天津: 0.5 %宣城: 1.1 %宣城: 1.1 %常德: 0.5 %常德: 0.5 %张家口: 3.8 %张家口: 3.8 %成都: 1.6 %成都: 1.6 %昆明: 0.5 %昆明: 0.5 %晋城: 1.1 %晋城: 1.1 %朝阳: 0.5 %朝阳: 0.5 %杭州: 2.2 %杭州: 2.2 %武汉: 0.5 %武汉: 0.5 %汕头: 0.5 %汕头: 0.5 %沈阳: 2.7 %沈阳: 2.7 %济源: 0.5 %济源: 0.5 %温州: 1.1 %温州: 1.1 %湖州: 2.2 %湖州: 2.2 %漯河: 1.6 %漯河: 1.6 %福州: 1.1 %福州: 1.1 %秦皇岛: 1.1 %秦皇岛: 1.1 %芒廷维尤: 18.6 %芒廷维尤: 18.6 %苏州: 0.5 %苏州: 0.5 %衢州: 1.1 %衢州: 1.1 %西宁: 8.7 %西宁: 8.7 %贵阳: 0.5 %贵阳: 0.5 %运城: 6.0 %运城: 6.0 %遵义: 0.5 %遵义: 0.5 %邯郸: 1.1 %邯郸: 1.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.5 %重庆: 0.5 %铁岭: 0.5 %铁岭: 0.5 %长沙: 1.1 %长沙: 1.1 %长治: 0.5 %长治: 0.5 %其他[]上海临汾丽水北京台州哈尔滨天津宣城常德张家口成都昆明晋城朝阳杭州武汉汕头沈阳济源温州湖州漯河福州秦皇岛芒廷维尤苏州衢州西宁贵阳运城遵义邯郸郑州重庆铁岭长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (240) PDF downloads(1) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return