Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Xing-run, LI Lei, YANG Xiang-hua, TIAN Yong-qiang. PROGRESS IN REMEDIATION OF CHROMIUM-CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 1-8,23. doi: 10.13205/j.hjgc.202006001
Citation: XI Dong-dong, LI Xiao-min, XIONG Zi-xuan, JIANG Zhi, ZHANG Xiao-ming, YANG Wei-chun. SYNERGISTIC REMOVAL OF Cu, Co, Ni AND Cr FROM CONTAMINATED SOIL BY BIOCHAR-SUPPORTED NANOSCALE ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 58-66. doi: 10.13205/j.hjgc.202006010

SYNERGISTIC REMOVAL OF Cu, Co, Ni AND Cr FROM CONTAMINATED SOIL BY BIOCHAR-SUPPORTED NANOSCALE ZERO-VALENT IRON

doi: 10.13205/j.hjgc.202006010
  • Received Date: 2020-03-24
  • In this study, a low-cost and highly efficient composite material (ZVI-SM) with nanoscale zero-valent iron loaded by biochar was synthesized and applied to the remediation of copper, cobalt, nickel and chromium contaminated soil. The effects of biochar precursors and biochar composites prepared at different carbonation temperatures on the remediation of heavy metal contamination, and their removal mechanisms were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and metal adsorption experiment. FeCr2O4 formed by adsorption and reduction greatly reduced the toxicity of chromium and improved the removal efficiency of copper, cobalt and nickel. The introduction of Fe0 not only increased the adsorption capacity of heavy metals to biochar, but also solved the problem of toxicity of Cr(Ⅵ). XPS further clarified that biochar could be used as the electron transfer medium; the strong interaction between the gain and loss electrons of the surface functional groups; Fe0 could enhance the removal effect of the composite material on multi-heavy metal ions; besides ZVI-SM500, the removal rates of rest of the four materials, ZVI-SM100, 300, 400, 700 for copper, cobalt, nickel, chromium were much higher than the commercial nanoscale Fe0 and single application of biological carbon materials; this kind of composite material (ZVI-SM) showed a strong affinity and reactivity to chromium and copper, and completely removed copper and chromium in 5 minutes. Cobalt and nickel could also achieve more than 80% removal rate in 180 minutes. There was a significant ion competition effect in the reaction process in the order of Cr≥Cu>Co>Ni, consistent with the trend of the standard reduction potential of metal ions. Soil remediation experiments showed that ZNI-SM300 for remediation of contaminated soil, after 15 days, the content of Cr(Ⅵ) decreased from 480 mg/kg to 0.52 mg/kg, and the total amount of water-soluble Cr decreased from 500 mg/kg to 1.2 mg/kg. The immobilization efficiency of both was more than 99%, while the total removal effect of water-soluble copper, cobalt, nickel and Cr(Ⅵ) was achieved. Therefore, the nanoscale zero-valent iron with SM300 as the carrier could be used as the ideal material for the remediation of soil contaminated by composite heavy metals.
  • DIACONU M, PAVEL L V, HLIHOR R M, et al. Characterization of heavy metal toxicity in some plants and microorganisms: a preliminary approach for environmental bioremediation[J]. New Biotechnology, 2020, 56: 130-139.
    WEN Q X, WANG Q, LI X Q, et al. Enhanced organics and Cu2+ removal in electroplating wastewater by bioaugmentation[J]. Chemosphere, 2018, 212: 476-485.
    LI X, WU Y E, ZHANG C, et al. Immobilizing of heavy metals in sediments contaminated by nonferrous metals smelting plant sewage with sulfate reducing bacteria and micro zero valent iron[J]. Chemical Engineering Journal, 2016, 306: 393-400.
    CHEN X, CUI J, XU X R, et al. Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment[J]. Carbohydrate Polymers, 2020, 229:115512.
    PAP S, J RADONIC', S TRIFUNOVIC', et al. Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb2+, Cd2+ and Ni2+ from aqueous wastes[J]. Journal of Environmental Management, 2016, 184: 297-306.
    FERRI M, CAMPISI S, SCAVINI M, et al. In-depth study of the mechanism of heavy metal trapping on the surface of hydroxyapatite[J]. Applied Surface Science, 2019, 475: 397-409.
    李明, 程寒飞, 安忠义, 等. 化学淋洗与生物质炭稳定化联合修复镉污染土壤[J]. 环境工程学报, 2018, 12(3):904-913.
    张志红, 陈家煜, 郭观林, 等. 稳定剂协同水泥固化/稳定化重金属污染土壤的工程特性[J]. 环境工程学报, 2017, 11(5):3172-3178.
    陈亚奎, 卢滇楠. 重金属污染土壤生物修复技术研究进展与现状[C]//2019中国环境科学学会科学技术年会论文集(第三卷), 2019: 564-568.
    朱玉斌. 土壤重金属污染现状及修复技术比较[J]. 中国资源综合利用, 2017, 35(5):56-58.
    YU H W, ZOU W X, CHEN J J, et al. Biochar amendment improves crop production in problem soils: a review[J]. Journal of Environmental Management, 2019, 232: 8-21.
    NIE C, YANG X, NIAZI N K, et al. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study[J]. Chemosphere, 2018, 200: 274-282.
    张杏锋, 冯健飞, 姚航, 等. 美洲商陆生物炭对Zn、Pb、Cd和Cu的吸附特性分析[J].环境工程, 2019, 37(8):88-94.
    LU X Q, LIU X W, ZHANG W Q, et al. The residue from the acidic concentrated lithium bromide treated crop residue as biochar to remove Cr (Ⅵ)[J]. Bioresource Technology, 2020, 296: 122348.
    熊静, 王蓓丽, 刘渊文, 等. 生物炭去除土壤重金属的研究进展[J].环境工程, 2019, 37(9):182-187.
    SHEN Z T, HOU D Y, JIN F, et al. Effect of production temperature on lead removal mechanisms by rice straw biochars[J]. Science of the Total Environment, 2019, 655: 751-758.
    LI S L, WANG W, LIANG F P, et al. Heavy metal removal using nanoscale zero-valent iron (nZVI): theory and application[J]. Journal of Hazardous Materials, 2017,322:163-171.
    薛嵩, 钱林波, 晏井春, 等. 生物炭携载纳米零价铁对溶液中Cr (Ⅵ)的去除[J]. 环境工程学报, 2016, 10(6): 2895-2901.
    孟繁健, 朱宇恩, 李华, 等. 改性生物炭负载nZVI对土壤Cr(Ⅵ)的修复差异研究[J]. 环境科学学报, 2017, 37(12):4715-4723.
    MANDAL S, PU S Y WANG X K, et al. Hierarchical porous structured polysulfide supported nZVI/biochar and efficient immobilization of selenium in the soil[J]. Science of the Total Environment, 2020, 708: 134831.
    王维大, 林薇, 李玉梅, 等. 黑炭负载零价铁对复合污染土壤中铜和铬的稳定化效果及生物有效性影响[J]. 环境工程学报, 2019, 13(4):944-954.
    孟李群, 张云鹏, 苏漳文, 等. 不同炭化温度下杉木生物炭产率及特性比较[J].福建林业科技,2014,41(2):38-41.
    LV D, ZHOU J S, CAO Z, et al. Mechanism and influence factors of chromium(Ⅵ) removal by sulfide-modified nanoscale zerovalent iron[J]. Chemosphere, 2019, 224: 306-315.
    QIAN L B, SHANG X, ZHANG B, et al. Enhanced removal of Cr(Ⅵ) by silicon rich biochar-supported nanoscale zero-valent iron[J]. Chemosphere, 2019, 215: 739-745.
    LI Z, SUN Y Q, YANG Y, et al. Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater[J]. Journal of Hazardpus Materials, 2020, 383: 121240.
    WU H H, WEI W X, XU C B, et al. Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr(Ⅵ)[J]. Ecotoxicology and Environmental Safety, 2020, 188: 109902.
    LI J X, ZHANG X Y, LIU M C, et al. Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions[J]. Environmental Science & Technology, 2018, 52(5): 2988-2997.
    LING L, HUANG X Y, LI M R, et al. Mapping the reactions in a single zero-valent iron nanoparticle[J]. Environmental Science & Technology, 2017, 51(24): 14293-14300.
  • Relative Articles

    [1]CHEN Yating, ZHAO Xinyu, LI Yanhong, ZHANG Chuanyan, DANG Qiuling, XI Beidou. ENVIRONMENTAL BEHAVIOR AND RESTORATION PROGRESS OF EMERGING CONTAMINANTS IN CONTAMINATED SITES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 166-176. doi: 10.13205/j.hjgc.202401022
    [2]ZHANG Wei, TANG Yifan, WANG Chen, CHAI Senyou, ZUO Qiting. RESEARCH PROGRESS ON SOIL REPLACEMENT MEDIUM IN BIOLOGICAL RETENTION FACILITIES FOR SPONGE CITY CONSTRUCTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 277-285. doi: 10.13205/j.hjgc.202308035
    [3]CHEN Zhikang, LIU Liujun, YIN Lipu, YUE Rui, MAO Xuhui. RESEARCH PROGRESS OF ELECTRICAL RESISTANCE HEATING FOR SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 224-234,243. doi: 10.13205/j.hjgc.202204032
    [4]HUANG Xuan, GUO Bao-man, GU Ai-liang, ZHANG Yun, TIAN Tian, CENG Yue-chun. RESEARCH ADVANCES AND APPLICATION OF HORIZONTAL REMEDIATION WELLS IN SITE REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 262-269. doi: 10.13205/j.hjgc.202209035
    [5]HUANG Guoxin, LIU Ruiping, YANG Ruijie, ZHANG Tao, ZHANG Qiulei, WANG Xiahui, TIAN Zi, WANG Yipeng. RESEARCH PROCESS OF RISK MANAGEMENT AND CONTROL AND THEIR APPLICATION REQUIREMENTS FOR FARMLAND SOIL HEAVY METAL CONTAMINATION IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 216-223. doi: 10.13205/j.hjgc.202201031
    [6]WU Fan, NIU Dong-jie. REVIEW ON PREDICTIVE MODELS FOR MUNICIPAL SOLID WASTE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 128-133. doi: 10.13205/j.hjgc.202104020
    [7]LENG Guo-qin, TAO Tian-yi, YANG Yi-fan, CHEN Bo-li, SUN Zhi, HUANG Zhao-hui. INDIUM RECOVERY PROCESSES DEVELOPMENT FROM VARIOUS In-CONTAINING WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 142-149. doi: 10.13205/j.hjgc.202105020
    [8]LIANG Jing, WANG Shi-jie, ZHANG Wen-yu, ZHANG Dan, ZHANG Yuan, ZOU Hui. REVIEW ON CONTAMINATED SITE REMEDIATION TECHNOLOGIES IN THE USA AND THEIR REVELATION TO CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 173-178. doi: 10.13205/j.hjgc.202106026
    [9]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [10]GUO Li-li, KANG Shao-guo, WANG Qi, XIONG Jing, LI Shu-peng, KONG Jiao-yan. PERMEABLE REACTIVE BARRIER FOR CHROMIUM CONTAMINATED GROUNDWATER REMEDIATION:AN OVERVIEW[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 9-15. doi: 10.13205/j.hjgc.202006002
    [11]YANG Wen-xiao, ZHANG Li, BI Xue, LI Huan-ru, GU Qian. RESEARCH ADVANCEMENT OF STABILIZATION MATERIALS FOR HEXAVALENT CHROMIUM(Ⅵ) CONTAMINATED SITE SOILS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 16-23. doi: 10.13205/j.hjgc.202006003
    [12]ZHANG Ruo-shi, TIAN Yong-qiang. RESEARCH PROGRESS OF BIOSORPTION REMEDIATION TECHNOLOGIES FOR CHROMIUM CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 187-195. doi: 10.13205/j.hjgc.202011031
    [13]SUN Zeng-zhi, YANG Bao-shuai, GUAN Bo-wen, GAO Si-qi, DENG Chen-ji, CHEN Yu-hong. RESEARCH PROGRESS ON MECHANICAL PROPERTIES OF RECYCLED CONCRETE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 221-227. doi: 10.13205/j.hjgc.202006036
    [14]FENG Chao, WANG Yu, KONG Ling-rong, YUE Chang-sheng, YAO De-jun, WANG Zhi-qiao. ADVANCES OF SUPERCRITICAL WATER REMEDIATION TECHNOLOGY FOR ORGANIC POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 140-145. doi: 10.13205/j.hjgc.202010022
    [15]Deng Yirong, Lin Ting, Xiao Rongbo, Zhao Lu, Han Cunliang. RECENT ADVANCES IN THE APPLICATION OF EKR-PRB IN CONTAMINATED SITE REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 152-157. doi: 10.13205/j.hjgc.201510034
    [16]Yao Yuping Liu Hanxiao Zhu Shaoping, . STUDY ON PARTICULATE MATTER GRAVIMETRIC METHOD AT LOW CONCENTRATION FOR COAL-FIRED POWER PLANT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 139-142. doi: 10.13205/j.hjgc.201510031
    [17]Zhang Hongzhong, Huo Jing, Ma Chuang, Zhao Jihong, Liu Huanjia. THE PROGRESS OF RESEACH ON THE APPLICATION OF URBAN SLUDGE COMPOST FOR LAWN SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 92-95. doi: 10.13205/j.hjgc.201502020
    [18]Yang Yang Song Naiping Liu Bingru He Tonghui An Hui, . THE CURRENT STATUS AND PROGRESSES OF CHANGES IN LAND USE PATTERN ON AGRO-PASTORAL ECOTONE OF CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 158-162. doi: 10.13205/j.hjgc.201503031
    [19]Yin Zhen, Zhang Junchao, Liao Shulin, Ma Qiang, Wang Qingguo, Zhang Jinfeng. RESEARCH AND APPLICATION OF THE REMEDIATION TECHNOLOGY FOR THE CHROMIUM CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 159-162. doi: 10.13205/j.hjgc.201501037
  • Cited by

    Periodical cited type(4)

    1. 于嘉璐,卢美霞,何苗苗,魏玉珍,蔡立群,潘占东,孛永明,李旭春. 生物炭和凹凸棒土负载纳米零价铁去除水中六价铬的性能与机理研究. 环境科学学报. 2024(07): 127-136 .
    2. 王雷,李红霞,崔兴兰,史新悦,郑鹏,孙英春,杨晓莉. 某高原区典型铬污染场地人体健康风险评价. 铜业工程. 2024(06): 18-24 .
    3. 徐汝悦,王子霄,沈禄,吴蓉蓉,姚芳婷,谭中原,刘恒蔚,张文超. Cr(Ⅵ)的生物修复技术研究进展. 生物技术通报. 2023(06): 49-60 .
    4. 邱沙,宋景鹏,陈志国,白鹤,曹文庆,刘艺芸. 原位化学还原技术修复铬污染土壤及其工程应用. 环境科学与技术. 2021(04): 131-139 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.0 %FULLTEXT: 9.0 %META: 91.0 %META: 91.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.0 %其他: 8.0 %其他: 0.1 %其他: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 1.2 %China: 1.2 %Japan: 0.1 %Japan: 0.1 %Saitama: 0.1 %Saitama: 0.1 %Tuen Mun San Hui: 0.3 %Tuen Mun San Hui: 0.3 %United States: 0.3 %United States: 0.3 %[]: 0.6 %[]: 0.6 %上海: 5.5 %上海: 5.5 %东莞: 1.1 %东莞: 1.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.3 %临沂: 0.3 %丽水: 0.1 %丽水: 0.1 %丽江: 0.1 %丽江: 0.1 %乌兰察布: 0.1 %乌兰察布: 0.1 %乐山: 0.1 %乐山: 0.1 %佛山: 0.4 %佛山: 0.4 %保定: 0.6 %保定: 0.6 %信阳: 0.1 %信阳: 0.1 %兰州: 0.1 %兰州: 0.1 %凉山彝族自治州: 0.1 %凉山彝族自治州: 0.1 %北京: 11.5 %北京: 11.5 %十堰: 0.1 %十堰: 0.1 %南京: 3.5 %南京: 3.5 %南充: 0.3 %南充: 0.3 %南宁: 0.2 %南宁: 0.2 %南昌: 1.1 %南昌: 1.1 %南通: 0.2 %南通: 0.2 %南通市崇川区: 0.1 %南通市崇川区: 0.1 %厦门: 0.5 %厦门: 0.5 %台北: 0.3 %台北: 0.3 %台州: 0.6 %台州: 0.6 %合肥: 1.2 %合肥: 1.2 %吉林: 0.4 %吉林: 0.4 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %唐山: 0.2 %唐山: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %大同: 0.1 %大同: 0.1 %天津: 2.9 %天津: 2.9 %太原: 0.8 %太原: 0.8 %威海: 0.1 %威海: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.4 %宁波: 0.4 %安庆: 0.1 %安庆: 0.1 %安康: 0.1 %安康: 0.1 %安顺: 0.1 %安顺: 0.1 %宜昌: 0.1 %宜昌: 0.1 %宜春: 0.6 %宜春: 0.6 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.6 %宣城: 0.6 %宫城: 0.1 %宫城: 0.1 %巴中: 0.1 %巴中: 0.1 %常州: 0.6 %常州: 0.6 %常德: 0.3 %常德: 0.3 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.2 %广州: 1.2 %廊坊: 0.1 %廊坊: 0.1 %延安: 0.1 %延安: 0.1 %张家口: 1.3 %张家口: 1.3 %德州: 0.1 %德州: 0.1 %德阳: 0.1 %德阳: 0.1 %惠州: 0.2 %惠州: 0.2 %成都: 1.3 %成都: 1.3 %成都市双流区: 0.1 %成都市双流区: 0.1 %扬州: 0.3 %扬州: 0.3 %抚州: 0.1 %抚州: 0.1 %拉萨: 0.1 %拉萨: 0.1 %拉贾斯坦邦: 0.1 %拉贾斯坦邦: 0.1 %攀枝花: 0.1 %攀枝花: 0.1 %新乡: 0.3 %新乡: 0.3 %无锡: 0.5 %无锡: 0.5 %昆明: 0.8 %昆明: 0.8 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 3.9 %杭州: 3.9 %枣庄: 0.1 %枣庄: 0.1 %株洲: 1.0 %株洲: 1.0 %桂林: 0.4 %桂林: 0.4 %榆林: 0.1 %榆林: 0.1 %武汉: 2.6 %武汉: 2.6 %汕头: 0.1 %汕头: 0.1 %沈阳: 0.5 %沈阳: 0.5 %河源: 0.1 %河源: 0.1 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 1.3 %济南: 1.3 %济源: 0.1 %济源: 0.1 %海口: 0.1 %海口: 0.1 %淄博: 0.4 %淄博: 0.4 %淮北: 0.1 %淮北: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.5 %温州: 0.5 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.7 %漯河: 0.7 %潍坊: 0.1 %潍坊: 0.1 %潮州: 0.1 %潮州: 0.1 %濮阳: 0.1 %濮阳: 0.1 %烟台: 0.3 %烟台: 0.3 %眉山: 0.1 %眉山: 0.1 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.8 %福州: 0.8 %绍兴: 0.3 %绍兴: 0.3 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 5.9 %芒廷维尤: 5.9 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.6 %苏州: 0.6 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 4.7 %西宁: 4.7 %西安: 1.5 %西安: 1.5 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.2 %赣州: 0.2 %达州: 0.3 %达州: 0.3 %运城: 0.9 %运城: 0.9 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.1 %邯郸: 0.1 %邵阳: 0.1 %邵阳: 0.1 %郑州: 1.7 %郑州: 1.7 %鄂州: 0.1 %鄂州: 0.1 %重庆: 2.0 %重庆: 2.0 %金华: 0.1 %金华: 0.1 %银川: 0.1 %银川: 0.1 %锦州: 0.4 %锦州: 0.4 %镇江: 0.1 %镇江: 0.1 %长春: 0.4 %长春: 0.4 %长沙: 3.2 %长沙: 3.2 %长治: 0.3 %长治: 0.3 %阜新: 0.1 %阜新: 0.1 %阳泉: 0.1 %阳泉: 0.1 %陇南: 0.1 %陇南: 0.1 %青岛: 2.5 %青岛: 2.5 %韶关: 0.1 %韶关: 0.1 %香港特别行政区: 0.3 %香港特别行政区: 0.3 %鹰潭: 0.1 %鹰潭: 0.1 %黄冈: 0.1 %黄冈: 0.1 %黄石: 0.6 %黄石: 0.6 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他Central DistrictChinaJapanSaitamaTuen Mun San HuiUnited States[]上海东莞中山临汾临沂丽水丽江乌兰察布乐山佛山保定信阳兰州凉山彝族自治州北京十堰南京南充南宁南昌南通南通市崇川区厦门台北台州合肥吉林呼和浩特咸阳哈尔滨唐山嘉兴大同天津太原威海娄底宁波安庆安康安顺宜昌宜春宝鸡宣城宫城巴中常州常德平顶山广州廊坊延安张家口德州德阳惠州成都成都市双流区扬州抚州拉萨拉贾斯坦邦攀枝花新乡无锡昆明晋城朝阳杭州枣庄株洲桂林榆林武汉汕头沈阳河源泸州洛阳济南济源海口淄博淮北深圳温州湖州湘潭漯河潍坊潮州濮阳烟台眉山石家庄福州绍兴绵阳芒廷维尤芝加哥苏州葫芦岛衡水衡阳衢州襄阳西宁西安贵阳赣州达州运城遵义邯郸邵阳郑州鄂州重庆金华银川锦州镇江长春长沙长治阜新阳泉陇南青岛韶关香港特别行政区鹰潭黄冈黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (372) PDF downloads(2) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return