Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LAI Dong-lin, ZHANG Qi, CHEN Ting-ting, CHEN Hui-xia, TONG Xue-jiao, XU Hong-bin, LIU Xing-hai, ZHAO Cai-yun. REMEDIATION PRACTICE OF HEXAVALENT CHROMIUM AND CYANIDE CONTAMINATED SOIL AT THE ORIGINAL SITE OF A MACHINERY PLANT IN ZHANGJIAKOU,CHINA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 75-80. doi: 10.13205/j.hjgc.202006012
Citation: LAI Dong-lin, ZHANG Qi, CHEN Ting-ting, CHEN Hui-xia, TONG Xue-jiao, XU Hong-bin, LIU Xing-hai, ZHAO Cai-yun. REMEDIATION PRACTICE OF HEXAVALENT CHROMIUM AND CYANIDE CONTAMINATED SOIL AT THE ORIGINAL SITE OF A MACHINERY PLANT IN ZHANGJIAKOU,CHINA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 75-80. doi: 10.13205/j.hjgc.202006012

REMEDIATION PRACTICE OF HEXAVALENT CHROMIUM AND CYANIDE CONTAMINATED SOIL AT THE ORIGINAL SITE OF A MACHINERY PLANT IN ZHANGJIAKOU,CHINA

doi: 10.13205/j.hjgc.202006012
  • Received Date: 2020-03-30
  • The electroplating wastewater generated during the electroplating process of the machinery factory will cause soil hexavalent chromium and cyanide pollution. Relying on the long-term use of the electroplating process of contaminated site remediation projects, the remediation target and the amount of work were determined through the preliminary site environmental investigation and risk assessment results, and the site soil pollution degree and pollution scope analysis; synthesis of site features and pollution characteristics, conduction of remediation technology screening determined that chemical oxidation, chemical reduction and solidification or stabilization was the core remediation technology for the project. The optimal composition and appending proportion of repairing agents were obtained by conducting small-scale and pilot-scale experiments, and used to implement the project. The results showed that after the chemical oxidation, chemical reduction and solidification or stabilization processing procedure of the hexavalent chromium and cyanide compound contaminated soil, the maximum exceeded concentration was reduced from the original 37.3, 186.0 mg/kg to below the corresponding standard limits of 3.0, 22 mg/kg, respectively; the leaching concentration of hexavalent chromium was lower than 0.5 mg/L, meeting the remediation requirements. The successful practice of the remediation project could provide reference for the design and implementation of remediation projects of other compound contaminated sites.
  • 李先荣,陈宁,董明甫,等. 黄磷尾气解毒铬渣[J]. 无机盐工业,2014,46(12):54-56.
    肖俊钧,周卫东,周健峰,等. 液压支架立柱表面处理工艺[J]. 煤矿机械,2018,39(10):98-101.
    刘继东,胡佳晨,王欢,等. 某电镀厂旧址铜、镍、六价铬复合污染土壤修复工程实例[C]//环境工程2019年全国学术年会,北京,2019.
    ZHANG J, LIU L, LIANG Y, et al. Enhanced precipitation of cyanide from electroplating wastewater via self-assembly of bimetal cyanide complex[J]. Separation and Purification Technology, 2015, 150:179-185.
    肖友程,许超,王扬,等. 河池市某砒霜厂污染土壤固化/稳定化修复工程实例[J]. 环境工程,2018,36(3):176-179.
    颜湘华,刘星海,王兴润,等. 改性芬顿试剂修复农药污染土壤的工艺条件优化[J]. 环境工程技术学报,2020,10(2):288-292.
    赵珍丽,赵委托,黄庭,等. 电镀厂周边大气PM10中重金属季节性分布特征及生态风险评价[J]. 环境科学,2018,39(1):18-26.
    史开宇, 颜湘华, 范琴,等. 铬污染场地渣土混合物的化学还原修复[J]. 环境工程学报, 2019, 13(4):213-218.
    许维通, 张紫薇, 苑文仪,等. 基于硫酸亚铁的机械化学还原法处理六价铬污染土壤[J]. 环境工程学报, 2018,12(6):1759-1765.
    白利平,罗云,刘俐,等. 污染场地修复技术筛选方法及应用[J]. 环境科学,2015,36(11):4218-4224.
    尹贞,张钧超,廖书林,等. 铬污染场地修复技术研究及应用[J]. 环境工程,2015,33(1):159-162.
    SOPHIA A, SWAMINATHAN K. Assessment of the mechanical stability and chemical leachability of immobilized electroplating waste[J]. Chemosphere, 2005, 58(1):75-82.
    彭扬波. 电镀中难溶氰化物的环保处理方法[J]. 电镀与涂饰, 2017,36(5):260-264.
    中华人民共和国生态环境部. 污染地块风险管控与土壤修复效果评估技术导则(试行):HJ 25.5—2018[S]. 北京:中国环境出版社,2018.
    中华人民共和国生态环境部. 土壤环境质量建设用地污染风险管控标准(试行):GB 36600—2018[S]. 北京:中国环境出版社,2018.
  • Relative Articles

    [1]YOU Yangyang, LIANG Zengqiang, HUO Ning. A PILOT STUDY ON SOIL REMEDIATION OF VOLATILE ORGANIC CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 184-189. doi: 10.13205/j.hjgc.202403023
    [2]NIU Jianmin, ZANG Chong, WANG Zhenghua, ZHOU Min, PAN Wenjie, LI Hongyan. ENGINEERING APPLICATION OF ENHANCED ROOM TEMPERATURE DESORPTION IN REMEDIATION OF SOIL CONTAMINATED BY CHLORINATED HYDROCARBONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 107-113. doi: 10.13205/j.hjgc.202405014
    [3]HAN Jianjun, CHAI Lujun, WANG Guojin, ZHANG Yu, QIN Kangjia, ZHOU Man, LIANG Xuejie, HAO Junpeng, WANG Hui. ISOLATION AND IDENTIFICATION OF A NEW SULFATE-REDUCING BACTERIUM AND ITS IN SITU REMEDIATION EFFECT OF HEXAVALENT CHROMIUM-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 192-198. doi: 10.13205/j.hjgc.202402023
    [4]YOU Xinfeng, ZHANG Shengdong. REVIEW OF TREATMENT AND CONDITIONING OF SPENT RADIOACTIVE RESIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 225-233. doi: 10.13205/j.hjgc.202304030
    [5]ZHAO Chutong, GUAN Yanyan, ZHANG Ze, WANG Xiaona, GAO Ming, WU Chuanfu, WANG Qunhui. EFFECT OF FLY ASH INCORPORATION ON HYDRATION MECHANISM AND HEAVY METAL SOLIDIFICATION/STABILIZATION EFFECT ON SLAG-BASED BACKFILLFING CEMENTITIOUS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 213-220,189. doi: 10.13205/j.hjgc.202312026
    [6]CHEN Acong, WEI Tuo, QIN Zhi, CHEN Yao, XU Rui, WU Haizhen, WEI Chaohai. SHIELDING EFFECT OF ZINC SULFATE ON CYANIDE COMPLEX DURING THIOCYANIDE DETECTION FOR COKING WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 134-139. doi: 10.13205/j.hjgc.202305018
    [7]WANG Mu, SONG Junjie, XIE Ronghuan, LI Weiping, LIU Guijian. EXPERIMENTAL STUDY OF H2O2 OXIDATION COUPLED WITH CHEMICAL WASHING TO REMEDY CHROMIUM-CONTAMINATED CLAYED SOIL FROM AN ELECTROPLATE FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 125-130. doi: 10.13205/j.hjgc.202208017
    [8]LI Geng, LI Haibo, LI Yinghua, CHEN Xi. SOLIDIFICATION/STABILIZATION OF As IN SOIL USING BIOCHAR LOADED WITH FERRIC MANGANESE BINARY OXIDES(FMBO)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 118-125. doi: 10.13205/j.hjgc.202203018
    [9]HUANG Xuan, GUO Bao-man, GU Ai-liang, ZHANG Yun, TIAN Tian, CENG Yue-chun. RESEARCH ADVANCES AND APPLICATION OF HORIZONTAL REMEDIATION WELLS IN SITE REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 262-269. doi: 10.13205/j.hjgc.202209035
    [10]JIN Xiao-dan, TIAN Yong-qiang, WU Hao, CHEN He-xiao, WANG Xing-run, CHENG Jin-ping. CHARACTERISTICS OF CHROMIUM POLLUTION AND ITS INFLUENCING FACTORS IN LEATHER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 206-211,219. doi: 10.13205/j.hjgc.202112031
    [11]YE Chun-mei, WU Jian-qiang, HUANG Shen-fa, SHA Chen-yan, XU Zhi-hao, WANG Jing, ZHOU Dong, SUN Hai-tong, HAN Li-ming. SOLIDIFICATION/STABILIZATION OF HEAVY METAL CONTAMINATED SEDIMENT BY COMPOUD MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 125-130,51. doi: 10.13205/j.hjgc.202008021
    [12]LI Qiang, GAO Cun-fu, CAO Ying, HE Lian-sheng, LIU Xiao-xue. COMPARISON AND VERIFICATION OF HEXAVALENT CHROMIUM DETECTION METHODS IN SOLID SAMPLES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 47-51. doi: 10.13205/j.hjgc.202006008
    [13]XI Dong-dong, LI Xiao-min, XIONG Zi-xuan, JIANG Zhi, ZHANG Xiao-ming, YANG Wei-chun. SYNERGISTIC REMOVAL OF Cu, Co, Ni AND Cr FROM CONTAMINATED SOIL BY BIOCHAR-SUPPORTED NANOSCALE ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 58-66. doi: 10.13205/j.hjgc.202006010
    [14]YANG Wen-xiao, ZHANG Li, BI Xue, LI Huan-ru, GU Qian. RESEARCH ADVANCEMENT OF STABILIZATION MATERIALS FOR HEXAVALENT CHROMIUM(Ⅵ) CONTAMINATED SITE SOILS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 16-23. doi: 10.13205/j.hjgc.202006003
    [19]Zhao Ligang, Pu Shengyan, Yang Jinyan, Yu Jing, Wang Youle. THE Cr( VI) POLLUTION CHARACTERISTICS OF GROUNDWATER AND SOIL IN THE SURROUNDINGS OF A CHROMIUM SLAG SITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 117-121. doi: 10.13205/j.hjgc.201502026
  • Cited by

    Periodical cited type(13)

    1. 郭佳林,刘芳,楚振哲,杨旭. 基于EVS建模分析物探-钻探在Cr(Ⅵ)污染场地勘察中的应用. 环境科学与技术. 2024(10): 171-178 .
    2. 孙正,曹亚非,王德彩,刘峰,宋效东,张甘霖,吴华勇. 近30年京津冀电镀场地时空演变特征及趋势预测. 生态环境学报. 2023(01): 183-194 .
    3. 俞明,毕宁,王习羽. 陶粒窑、异位化学氧化技术联用的某修复工程实例研究. 现代化工. 2023(07): 228-232 .
    4. 王宏,胡清,许盛彬,王炜,童立志. 建设用地安全再开发重金属污染风险阻控技术研究进展. 环境工程. 2022(01): 224-230 . 本站查看
    5. 刘喆. 市政园林土壤生态环保修复措施的应用. 南方农业. 2022(12): 198-200 .
    6. 胡清,罗培,冯明玉,韦黎华,王宏. 固化/稳定化修复后场地土壤中铬的环境行为与归趋. 环境工程学报. 2022(07): 2122-2134 .
    7. 宋文恩. 电镀企业重金属污染场地土壤修复技术研究. 皮革制作与环保科技. 2022(11): 133-135 .
    8. 谭学军,向甲甲,殷瑶,高强,孙瑞,黄晟. 重金属污染土壤联合强化淋洗修复技术研究进展. 环境卫生工程. 2022(04): 74-82 .
    9. 徐超. 基于生态平衡的污染场地土壤修复措施分析. 山西化工. 2022(04): 137-139+154 .
    10. 李云飞,张璐,吴玉娇,于宁宁. 典型电镀场地含氟重金属污染土壤固化/稳定化技术研究与工程应用. 浙江农业科学. 2022(10): 2429-2432 .
    11. 张佩佩,张豆,王福友,李晓雪,凃啸宇,雷鸣. 六安市某六价铬污染场地修复工程实践. 节能. 2022(09): 64-67 .
    12. 陈浮,朱燕峰,马静,刘俊娜,于昊辰,张绍良. 生物炭+速生植物对工业场地周边土壤镉污染原位修复. 煤炭学报. 2021(05): 1477-1486 .
    13. 董万涛,王亚军,李丽,张兴. H_2O_2、Na_2FeO_4去除土壤中总石油烃的反应动力学. 环境工程. 2021(10): 178-184 . 本站查看

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.9 %FULLTEXT: 8.9 %META: 91.1 %META: 91.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.3 %其他: 15.3 %其他: 0.8 %其他: 0.8 %China: 0.8 %China: 0.8 %United States: 0.8 %United States: 0.8 %上海: 2.4 %上海: 2.4 %东莞: 0.8 %东莞: 0.8 %临汾: 0.4 %临汾: 0.4 %临沂: 0.4 %临沂: 0.4 %丽水: 0.4 %丽水: 0.4 %佛山: 0.4 %佛山: 0.4 %保定: 0.8 %保定: 0.8 %北京: 6.8 %北京: 6.8 %十堰: 0.4 %十堰: 0.4 %南京: 1.6 %南京: 1.6 %南通: 0.4 %南通: 0.4 %台州: 1.6 %台州: 1.6 %嘉兴: 0.4 %嘉兴: 0.4 %圣何塞: 0.4 %圣何塞: 0.4 %大同: 0.4 %大同: 0.4 %天津: 1.2 %天津: 1.2 %常德: 0.4 %常德: 0.4 %广州: 1.2 %广州: 1.2 %廊坊: 0.4 %廊坊: 0.4 %张家口: 3.6 %张家口: 3.6 %徐州: 1.6 %徐州: 1.6 %成都: 2.4 %成都: 2.4 %扬州: 1.2 %扬州: 1.2 %拉贾斯坦邦: 0.4 %拉贾斯坦邦: 0.4 %无锡: 0.4 %无锡: 0.4 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.8 %朝阳: 0.8 %杭州: 2.8 %杭州: 2.8 %武汉: 1.2 %武汉: 1.2 %济源: 0.8 %济源: 0.8 %淄博: 1.6 %淄博: 1.6 %深圳: 0.8 %深圳: 0.8 %湖州: 1.6 %湖州: 1.6 %滨州: 0.4 %滨州: 0.4 %漯河: 0.4 %漯河: 0.4 %石家庄: 0.4 %石家庄: 0.4 %秦皇岛: 0.8 %秦皇岛: 0.8 %芒廷维尤: 14.5 %芒廷维尤: 14.5 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.4 %苏州: 0.4 %葫芦岛: 0.4 %葫芦岛: 0.4 %衡水: 0.4 %衡水: 0.4 %衢州: 2.0 %衢州: 2.0 %西宁: 9.6 %西宁: 9.6 %西安: 1.2 %西安: 1.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 3.2 %运城: 3.2 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 2.0 %郑州: 2.0 %重庆: 0.4 %重庆: 0.4 %铜陵: 0.4 %铜陵: 0.4 %长沙: 0.8 %长沙: 0.8 %长治: 0.4 %长治: 0.4 %阳泉: 0.8 %阳泉: 0.8 %青岛: 0.4 %青岛: 0.4 %香港特别行政区: 0.8 %香港特别行政区: 0.8 %其他其他ChinaUnited States上海东莞临汾临沂丽水佛山保定北京十堰南京南通台州嘉兴圣何塞大同天津常德广州廊坊张家口徐州成都扬州拉贾斯坦邦无锡晋城朝阳杭州武汉济源淄博深圳湖州滨州漯河石家庄秦皇岛芒廷维尤芝加哥苏州葫芦岛衡水衢州西宁西安贵阳运城遵义邯郸郑州重庆铜陵长沙长治阳泉青岛香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (226) PDF downloads(6) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return