Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Lin, XIN Yu, YAO Tong, WEI Li-li, LIU Chao-xiang. REMOVAL PATHWAYS OF TYPICAL ANTIBIOTICS FROM LIVESTOCK WASTEWATER BY CONSTRUCTED WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 102-107. doi: 10.13205/j.hjgc.202006016
Citation: LIU Lin, XIN Yu, YAO Tong, WEI Li-li, LIU Chao-xiang. REMOVAL PATHWAYS OF TYPICAL ANTIBIOTICS FROM LIVESTOCK WASTEWATER BY CONSTRUCTED WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 102-107. doi: 10.13205/j.hjgc.202006016

REMOVAL PATHWAYS OF TYPICAL ANTIBIOTICS FROM LIVESTOCK WASTEWATER BY CONSTRUCTED WETLAND

doi: 10.13205/j.hjgc.202006016
  • Received Date: 2019-06-24
  • In this paper, with the conventional pollutants addition, adsorption was found out as the main removal pathway of oxytetracycline, ciprofloxacin and sulfamethazine in the constructed wetland, and its contribution rates of that were 75%, 85% and 62%, respectively. Hydrolysis was the secondary removal pathway of oxytetracycline and ciprofloxacin (21% and 19%), and biodegradation was the secondary removal pathway of sulfamethazine (23%). Compared to the treatment group without conventional pollutants addition, the effect of conventional pollutants on antibiotics adsorption was not significant, yet that could inhibit hydrolysis process of oxytetracycline and ciprofloxacin (about 7% and 5%), and conventional pollutants could enhance contribution of biodegradation for sulfamethazine (about 21%).
  • ZHOU L J, YING G G, LIU S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China[J]. Science of the Total Environment, 2013, 444(2):183-195.
    傅海霞, 刘怡, 董志英,等.抗生素与重金属复合污染的生态毒理效应研究进展[J]. 环境工程, 2016, 34(4):60-63

    ,104.
    LIU L, LIU Y H, WANG Z, et al. Behavior of tetracycline and sulfamethazine with corresponding resistance genes from swine wastewater in pilot-scale constructed wetlands[J]. Journal of Hazardous Materials, 2014, 278:304-310.
    张鹏飞, 刘晓文, 李杰,等. 养殖废水中抗生素去除处理工艺的研究现状[J]. 净水技术, 2018, 37(4):60-65.
    程宪伟, 梁银秀, 祝惠,等. 人工湿地处理水体中抗生素的研究进展[J]. 湿地科学, 2017, 15(1):128-134.
    ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
    LIAO J, LIU C X, LIU L, et al. Influence of hydraulic retention time on behavior of antibiotics and antibiotic resistance genes in aerobic granular reactor treating biogas slurry[J]. Frontiers of Environmental Science & Engineering, 2019, 13(3):59-67.
    LIU L, LI J, FAN H Y, et al. Fate of antibiotics from swine wastewater in constructed wetlands with different flow configurations[J]. International Biodeterioration & Biodegradation, 2019, 140: 119-125.
    HIJOSA-VALSERO M, FINK G, SCHLVSENER M P, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization[J]. Chemosphere, 2011, 83(5): 713-719.
    DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: a review[J]. Environmental Chemistry Letters, 2013, 11(3): 209-227.
    LI B, ZHANG T. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environmental Science & Technology, 2010, 44(9): 3468-3473.
    SONG X C, LIU D F, ZHANG G W, et al. Adsorption mechanisms and the effect of oxytetracycline on activated sludge[J]. Bioresource Technology, 2014, 151: 428-431.
    WU Q F, LI Z H, HONG H L, et al. Adsorption and intercalation of ciprofloxacin on montmorillonite[J]. Applied Clay Science, 2010, 50(2): 204-211.
    CHENG D M, FENG Y, LIU Y W, et al. Quantitative models for predicting adsorption of oxytetracycline, ciprofloxacin and sulfamerazine to swine manures with contrasting properties[J]. Science of the Total Environment, 2018, 634: 1148-1156.
    LI J, ZHANG H, YUAN G D. Phosphate affects adsorption and desorption of oxytetracycline in the seawater-sediment systems[J]. Environmental Science and Pollution Research, 2018, 25(28): 28160-28168.
    ZHAO Y P, GU X Y, GAO S X, et al. Adsorption of tetracycline (TC) onto montmorillonite: cations and humic acid effects[J]. Geoderma, 2012, 183/184: 12-18.
    WATERMAN K C, ADAMI R C, ALSANTE K M, et al. Hydrolysis in pharmaceutical formulations[J]. Pharmaceutical Development and Technology, 2002, 7(2): 113-146.
    DOI A M, STOSKOPF M K. The kinetics of oxytetracycline degradation in deionized water under varying temperature, pH, light, substrate, and organic matter[J]. Journal of Aquatic Animal Health, 2000, 12(3): 246-253.
    BIAŁK-BIELIŃSKA A, STOLTE S, MATZKE M, et al. Hydrolysis of sulphonamides in aqueous solutions[J]. Journal of Hazardous Materials, 2012, 221/222: 264-274.
    XUAN R C, ARISI L, WANG Q Q, et al. Hydrolysis and photolysis of oxytetracycline in aqueous solution[J]. Journal of Environmental Science and Health Part B, 2009, 45(1): 73-81.
    LIU L, LIU Y H, LIU C X, et al. Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions[J]. Ecological Engineering, 2013, 53: 138-143.
    DETTENMAIER E M, DOUCETTE W J, BUGBEE B. Chemical hydrophobicity and uptake by plant roots[J]. Environmental Science & Technology, 2008, 43(2): 324-329.
    DALTON H, STIRLING D I. Co-metabolism[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1982, 297(1088): 481-496.
    TOYAMA T, FURUKAWA T, MAEDA N, et al. Accelerated biodegradation of pyrene and benzo [a] pyrene in the Phragmites australis rhizosphere by bacteria-root exudate interactions[J]. Water Research, 2011, 45(4): 1629-1638.
    OLIVEIRA G H D, SANTOS-NETO A J, ZAIAT M. Evaluation of sulfamethazine sorption and biodegradation by anaerobic granular sludge using batch experiments[J]. Bioprocess and Biosystems Engineering, 2016, 39(1): 115-124.
  • Relative Articles

    [1]LI Haicheng, CHENG Cheng, CHEN Zhenglin, YANG Lixia, LUO Shenglian. SULFIDE ION DOPING PROMOTES EFFICIENT PHOTOCATALYTIC DEGRADATION OF TOLUENE BY WO3 NANOWIRES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 201-210. doi: 10.13205/j.hjgc.202409019
    [2]CHEN Acong, WEI Tuo, QIN Zhi, CHEN Yao, XU Rui, WU Haizhen, WEI Chaohai. SHIELDING EFFECT OF ZINC SULFATE ON CYANIDE COMPLEX DURING THIOCYANIDE DETECTION FOR COKING WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 134-139. doi: 10.13205/j.hjgc.202305018
    [3]ZHOU Lichang, LI Zhaoling, CHEN Lei, LIN Ya'nan, GONG Zhiwei, LIN Qingshan, MA Jie, WANG Zongping, GUO Gang. SHORT-TERM EFFECT OF THIOSULFATE ON COMPETITION BETWEEN SULFUR BACTERIA AND GLYCOGEN ACCUMULATING ORGANISMS IN SULFUR-CONTAINING WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 26-32. doi: 10.13205/j.hjgc.202308004
    [4]ZHANG Kui, WANG Xuemei, LI Yuhuan, ZHANG Yu, LIU Mengjuan, JIANG Xueping, JI Hongbing. HIGH EFFICIENCY ADSORPTION OF Hg2+ BY SULFUR-MODIFIED COW MANURE BIOCHAR AND ITS MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 79-88. doi: 10.13205/j.hjgc.202204012
    [5]DONG Wan-tao, WANG Ya-jun, LI Li, ZHANG Xing. REACTION KINETICS STUDY ON H2O2 AND Na2FeO4 REMOVING TOTAL PETROLEUM HYDROCARBON FROM SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 178-184. doi: 10.13205/j.hjgc.202110025
    [6]WANG Yan, ZOU Lv-xi, MAO Lin-feng, CHEN Ya-li, LI Ji. EFFICIENCY AND MECHANISM OF UV/O3-Na2S2O8 IN TREATING ACTIVATED CARBON REGENERATION CONDENSATE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 38-44. doi: 10.13205/j.hjgc.202007006
    [11]Zhang Jun, Xu Junyang, Wang Dunqiu, Yang Huiping, Wu Xiaohui. EFFECTS OF TYPES AND CONCENTRATIONS OF SULFUR SUBSTRATE ON BIOLEACHING HEAVY METALS FROM SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 39-43. doi: 10.13205/j.hjgc.201504009
  • Cited by

    Periodical cited type(8)

    1. 郭磊,黄黎明,韦振祖,刘艇安,王靓,吴玮. 非均匀边界条件下SCR脱硝系统数值模拟及改造效果分析. 洁净煤技术. 2024(S2): 272-278 .
    2. 张起,张福祥,李盛平,景浩林,杨锐涵,董志强,杨祖旺,田桦. 660 MW燃煤机组脱硝系统优化改造. 能源与节能. 2023(02): 99-104 .
    3. 韩冰,李清方,刘海丽,于惠娟,张舒漫,王辉. 百万吨级CO_2捕集烟气集成处理塔流场模拟及优化. 石油工程建设. 2022(04): 7-11+34 .
    4. 封例忠,丛日强,刘怡,齐艳芳. 基于CFD的某330MW燃煤机组SCR脱硝系统混合器优化与验证. 环境工程. 2022(10): 156-161 . 本站查看
    5. 韦振祖,赵宁波,李明磊,刘瑞敬,谢新华,周健,卢承政. 非均匀入口条件下SCR脱硝系统流场优化改造技术研究. 锅炉技术. 2021(04): 74-80 .
    6. 陶莉,肖育军. SCR区域喷氨的NH_3分布与均匀性调整. 环境工程技术学报. 2021(04): 663-669 .
    7. 张云雷,孙仲超,梁大明,熊银伍,李艳芳. 活性焦烟气净化反应器研究进展. 洁净煤技术. 2020(04): 21-30 .
    8. 王为,朱召平,张楚城,陈牧,苏寅彪,郑晓盼. 高温除尘脱硝一体化技术开发及流场模拟研究. 洁净煤技术. 2020(04): 154-161 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.5 %FULLTEXT: 6.5 %META: 93.5 %META: 93.5 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.5 %其他: 17.5 %Bulgaria: 0.5 %Bulgaria: 0.5 %Canada: 1.4 %Canada: 1.4 %China: 1.4 %China: 1.4 %Germany: 0.5 %Germany: 0.5 %Greece: 0.5 %Greece: 0.5 %Italy: 0.5 %Italy: 0.5 %Netherlands: 0.5 %Netherlands: 0.5 %Portugal: 0.9 %Portugal: 0.9 %Saudi Arabia: 0.5 %Saudi Arabia: 0.5 %Sweden: 0.9 %Sweden: 0.9 %United States: 4.1 %United States: 4.1 %临汾: 0.5 %临汾: 0.5 %佛罗里达: 0.9 %佛罗里达: 0.9 %保定: 1.4 %保定: 1.4 %北京: 12.0 %北京: 12.0 %十堰: 0.5 %十堰: 0.5 %台州: 0.5 %台州: 0.5 %大同: 0.5 %大同: 0.5 %天津: 1.4 %天津: 1.4 %宣城: 0.5 %宣城: 0.5 %常德: 0.9 %常德: 0.9 %广州: 0.5 %广州: 0.5 %张家口: 1.8 %张家口: 1.8 %成都: 0.9 %成都: 0.9 %扬州: 0.5 %扬州: 0.5 %拉贾斯坦邦: 0.5 %拉贾斯坦邦: 0.5 %晋城: 0.9 %晋城: 0.9 %朝阳: 0.5 %朝阳: 0.5 %杭州: 0.5 %杭州: 0.5 %欧文: 0.5 %欧文: 0.5 %沈阳: 0.5 %沈阳: 0.5 %泰安: 0.5 %泰安: 0.5 %济源: 0.5 %济源: 0.5 %温州: 0.5 %温州: 0.5 %湘潭: 0.5 %湘潭: 0.5 %漯河: 1.8 %漯河: 1.8 %石家庄: 0.5 %石家庄: 0.5 %纽约: 0.5 %纽约: 0.5 %芒廷维尤: 22.1 %芒廷维尤: 22.1 %芝加哥: 3.7 %芝加哥: 3.7 %苏州: 0.9 %苏州: 0.9 %萍乡: 0.5 %萍乡: 0.5 %衢州: 0.5 %衢州: 0.5 %西宁: 5.1 %西宁: 5.1 %西安: 0.5 %西安: 0.5 %贵阳: 0.5 %贵阳: 0.5 %运城: 3.7 %运城: 3.7 %遵义: 0.5 %遵义: 0.5 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.9 %郑州: 0.9 %重庆: 0.5 %重庆: 0.5 %铜陵: 0.5 %铜陵: 0.5 %长治: 0.5 %长治: 0.5 %其他BulgariaCanadaChinaGermanyGreeceItalyNetherlandsPortugalSaudi ArabiaSwedenUnited States临汾佛罗里达保定北京十堰台州大同天津宣城常德广州张家口成都扬州拉贾斯坦邦晋城朝阳杭州欧文沈阳泰安济源温州湘潭漯河石家庄纽约芒廷维尤芝加哥苏州萍乡衢州西宁西安贵阳运城遵义邯郸郑州重庆铜陵长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (784) PDF downloads(12) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return