Citation: | YUAN Hong-lin, WEN Jun-wei, XING Bao-shan, HAN Yu-le, CAO Si-fan, MA Jing, WANG Xiao-chang. RECOVERY STRATEGY OF SEQUENTIAL BIOCATALYST ADDITION AFTER INHIBITION OF FULL-SCALE NITRIFICATION SYSTEMS: A FEASIBILITY STUDY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 132-136,201. doi: 10.13205/j.hjgc.202006021 |
TANG H L, CHEN H P. Nitrification at full-scale municipal wastewater treatment plants: evaluation of inhibition and bioaugmentation of nitrifiers[J].Bioresource Technology,2015,190:76-81.
|
HUANG Z S, LIU D S, ZHAO H X, et al. Performance and microbial community of aerobic dynamic membrane bioreactor enhanced by Cd(Ⅱ)-accumulating bacterium in Cd(Ⅱ)-containing wastewater treatment[J].Chemical Engineering Journal,2017,317:368-375.
|
HERRERO M, STUCKEY D C. Bioaugmentation and its application in wastewater treatment: a review[J].Chemosphere,2015,140:119-128.
|
TALE V P, MAKI J S, ZITOMER D H. Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community[J].Water Research,2015,70:138-147.
|
GUO J B, WANG J H, CUI D, et al. Application of bioaugmentation in the rapid start-up and stable operation of biological processes for municipal wastewater treatment at low temperatures[J].Bioresource Technology,2010,101(17):6622-6629.
|
YANG K, JI B, WANG H Y, et al. Bio-augmentation as a tool for improving the modified sequencing batch biofilm reactor[J].Journal of Bioscience and Bioengineering,2014,117(6):763-768.
|
ZHANG Q Q, YANG G F, ZHANG L, et al. Bioaugmentation as a useful strategy for performance enhancement in biological wastewater treatment undergoing different stresses: application and mechanisms [J]. Critical Reviews in Environmental Science and Technology, 2017,47(19): 1877-1899.
|
JIN R C, ZHANG Q Q, ZHANG Z Z, et al. Bio-augmentation for mitigating the impact of transient oxytetracycline shock on anaerobic ammonium oxidation (ANAMMOX) performance[J].Bioresource Technology,2014,163:244-253.
|
ZHANG Q Q, YANG G F, SUN K K, et al. Insights into the effects of bio-augmentation on the granule-based anammox process under continuous oxytetracycline stress: performance and microflora structure [J].Chemical Engineering Journal,2018,348:503-513.
|
YAO H, LI H Y, XU J, et al. Inhibitive effects of chlortetracycline on performance of the nitritation-anaerobic ammonium oxidation (anammox) process and strategies for recovery [J]. Journal of Environmental Sciences,2018,70(8):29-36.
|
CHEN Q, NI J R, MA T, et al. Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR[J].Bioresource Technology,2015,183:25-32.
|
APHA, 2005.Standard Methods for the Examination of Water and Wastewater,twenty-first ed[S]. American Public Health Association,Washington,DC.
|
魏继林,彭党聪,聂玲,等.硝化菌添加强化硝化实验研究[J].水处理技术,2014,40(7):111-115.
|
SALEM S, BERENDS D H J G, HEIJNEN J J,et al. Bioaugmentation by nitrification with return sludge [J].Water Research,2003,37(8):1794-1804.
|
张姿,汤兵.活性污泥系统中微生物菌群及其功能特性的研究进展[J].工业水处理,2015,35(3): 5-9.
|
DENYER S P, STEWART G S A B. Mechanisms of action of disinfectants [J]. International Biodeterioration & Biodegradation, 1998, 41(98): 261-268.
|
李娟英,赵庆祥,江敏.氨氮生物硝化过程中苯酚的抑制作用[J].水处理技术,2007,33(2):46-49.
|
周振, 唐建国, 张爱平,等. 城镇污水处理厂强化硝化技术现状分析[J]. 中国给水排水, 2013, 29(20): 5-8.
|
BOUCHEZ T,PATUREAU D,DABERT P,et al. Ecological study of a bioaugmentation failure [J]. Environmental Microbiology, 2000, 2(2): 179-190.
|
DILRIKA H, ABEYSINGHE D G, VIRAJ DE SILVA, et al. The effectiveness of bioaugmentation in nitrifying systems stressed by a washout condition and cold temperature[J]. Water Environment Research,2002,74(2):187-199.
|
TAN W B, HUANG C, CHEN C, et al. Bioaugmentation of activated sludge with elemental sulfur producing strain Thiopseudomonas denitrificans X2 against nitrate shock load[J]. Bioresource Technology,2016,220:647-650.
|
CARRERA J, MARTÍN-HERNÁNDEZ M, SUÁREZ-OJEDA M E. Bioaugmentation for treating transient or continuous p-nitrophenol shock loads in an aerobic sequencing batch reactor[J]. Bioresource Technology, 2012,123:150-156.
|
YU F B, ALI S W, GUAN L B, et al. Bioaugmentation of a sequencing batch reactor with Pseudomonas putida ONBA-17, and its impact on reactor bacterial communities[J].Journal of Hazardous Materials,2010,176(1/2/3):20-26.
|
GU S B, WANG S Y, YANG Q, et al. Start up partial nitrification at low temperature with a real-time control strategy based on blower frequency and pH[J].Bioresource Technology,2012,112:34-41.
|
ZHANG S F, WANG Y Y, HE W T, et al. Impacts of temperature and nitrifying community on nitrification kinetics in a moving-bed biofilm reactor treating polluted raw water[J]. Chemical Engineering Journal,2014,236:242-250.
|
COLIN M F, PAMELA C, OSHLAG J Z, et al. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen[J]. Water Research,2015,70:38-51.
|
刘振, 徐常青. 强化硝化工艺在污水处理中的应用[J]. 环境工程, 2016, 34(增刊1): 135-137.
|
[1] | CHEN Yating, ZHAO Xinyu, LI Yanhong, ZHANG Chuanyan, DANG Qiuling, XI Beidou. ENVIRONMENTAL BEHAVIOR AND RESTORATION PROGRESS OF EMERGING CONTAMINANTS IN CONTAMINATED SITES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 166-176. doi: 10.13205/j.hjgc.202401022 |
[2] | ZHANG Wei, TANG Yifan, WANG Chen, CHAI Senyou, ZUO Qiting. RESEARCH PROGRESS ON SOIL REPLACEMENT MEDIUM IN BIOLOGICAL RETENTION FACILITIES FOR SPONGE CITY CONSTRUCTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 277-285. doi: 10.13205/j.hjgc.202308035 |
[3] | CHEN Zhikang, LIU Liujun, YIN Lipu, YUE Rui, MAO Xuhui. RESEARCH PROGRESS OF ELECTRICAL RESISTANCE HEATING FOR SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 224-234,243. doi: 10.13205/j.hjgc.202204032 |
[4] | HUANG Xuan, GUO Bao-man, GU Ai-liang, ZHANG Yun, TIAN Tian, CENG Yue-chun. RESEARCH ADVANCES AND APPLICATION OF HORIZONTAL REMEDIATION WELLS IN SITE REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 262-269. doi: 10.13205/j.hjgc.202209035 |
[5] | HUANG Guoxin, LIU Ruiping, YANG Ruijie, ZHANG Tao, ZHANG Qiulei, WANG Xiahui, TIAN Zi, WANG Yipeng. RESEARCH PROCESS OF RISK MANAGEMENT AND CONTROL AND THEIR APPLICATION REQUIREMENTS FOR FARMLAND SOIL HEAVY METAL CONTAMINATION IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 216-223. doi: 10.13205/j.hjgc.202201031 |
[6] | WU Fan, NIU Dong-jie. REVIEW ON PREDICTIVE MODELS FOR MUNICIPAL SOLID WASTE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 128-133. doi: 10.13205/j.hjgc.202104020 |
[7] | LENG Guo-qin, TAO Tian-yi, YANG Yi-fan, CHEN Bo-li, SUN Zhi, HUANG Zhao-hui. INDIUM RECOVERY PROCESSES DEVELOPMENT FROM VARIOUS In-CONTAINING WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 142-149. doi: 10.13205/j.hjgc.202105020 |
[8] | LIANG Jing, WANG Shi-jie, ZHANG Wen-yu, ZHANG Dan, ZHANG Yuan, ZOU Hui. REVIEW ON CONTAMINATED SITE REMEDIATION TECHNOLOGIES IN THE USA AND THEIR REVELATION TO CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 173-178. doi: 10.13205/j.hjgc.202106026 |
[9] | HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033 |
[10] | GUO Li-li, KANG Shao-guo, WANG Qi, XIONG Jing, LI Shu-peng, KONG Jiao-yan. PERMEABLE REACTIVE BARRIER FOR CHROMIUM CONTAMINATED GROUNDWATER REMEDIATION:AN OVERVIEW[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 9-15. doi: 10.13205/j.hjgc.202006002 |
[11] | YANG Wen-xiao, ZHANG Li, BI Xue, LI Huan-ru, GU Qian. RESEARCH ADVANCEMENT OF STABILIZATION MATERIALS FOR HEXAVALENT CHROMIUM(Ⅵ) CONTAMINATED SITE SOILS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 16-23. doi: 10.13205/j.hjgc.202006003 |
[12] | ZHANG Ruo-shi, TIAN Yong-qiang. RESEARCH PROGRESS OF BIOSORPTION REMEDIATION TECHNOLOGIES FOR CHROMIUM CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 187-195. doi: 10.13205/j.hjgc.202011031 |
[13] | SUN Zeng-zhi, YANG Bao-shuai, GUAN Bo-wen, GAO Si-qi, DENG Chen-ji, CHEN Yu-hong. RESEARCH PROGRESS ON MECHANICAL PROPERTIES OF RECYCLED CONCRETE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 221-227. doi: 10.13205/j.hjgc.202006036 |
[14] | FENG Chao, WANG Yu, KONG Ling-rong, YUE Chang-sheng, YAO De-jun, WANG Zhi-qiao. ADVANCES OF SUPERCRITICAL WATER REMEDIATION TECHNOLOGY FOR ORGANIC POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 140-145. doi: 10.13205/j.hjgc.202010022 |
[15] | Deng Yirong, Lin Ting, Xiao Rongbo, Zhao Lu, Han Cunliang. RECENT ADVANCES IN THE APPLICATION OF EKR-PRB IN CONTAMINATED SITE REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 152-157. doi: 10.13205/j.hjgc.201510034 |
[16] | Yao Yuping Liu Hanxiao Zhu Shaoping, . STUDY ON PARTICULATE MATTER GRAVIMETRIC METHOD AT LOW CONCENTRATION FOR COAL-FIRED POWER PLANT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 139-142. doi: 10.13205/j.hjgc.201510031 |
[17] | Zhang Hongzhong, Huo Jing, Ma Chuang, Zhao Jihong, Liu Huanjia. THE PROGRESS OF RESEACH ON THE APPLICATION OF URBAN SLUDGE COMPOST FOR LAWN SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 92-95. doi: 10.13205/j.hjgc.201502020 |
[18] | Yang Yang Song Naiping Liu Bingru He Tonghui An Hui, . THE CURRENT STATUS AND PROGRESSES OF CHANGES IN LAND USE PATTERN ON AGRO-PASTORAL ECOTONE OF CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 158-162. doi: 10.13205/j.hjgc.201503031 |
[19] | Yin Zhen, Zhang Junchao, Liao Shulin, Ma Qiang, Wang Qingguo, Zhang Jinfeng. RESEARCH AND APPLICATION OF THE REMEDIATION TECHNOLOGY FOR THE CHROMIUM CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 159-162. doi: 10.13205/j.hjgc.201501037 |