Citation: | YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029 |
KIOUMOURTZOGLOU M A,SCHWARTZ J,JAMES P,et al. PM2.5 and mortality in 207 US cities modification by temperature and city characteristics[J]. Epidemiology,2016,27(2): 221-227.
|
中华人民共和国环保部.2015中国环境状况公报[Z]. 北京:[2016-06-01
].
|
CHEN J J,LU J,AVISE J C,et al. Seasonal modeling of PM2.5 in California’s San Joaquin Valley[J]. Atmospheric Environment,2014,92: 182-190.
|
WANG Z,MAEDA T,HAYASHI M,et al. A nested air quality prediction modeling system for urban and regional scales: application for high-ozone episode in Taiwan[J]. Water Air & Soil Pollution,2001,130(1/2/3/4): 391-396.
|
SAIDE P E,CARMICHAEL G R,SPAK S N,et al. Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model[J]. Atmospheric Environment,2011,45(16): 2769-2780.
|
LI X,PENG L,YAO X J,et al. Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation[J]. Environmental Pollution,2017,231(1): 997-1004.
|
陈宁,毛善君,李德龙,等. 多基站协同训练神经网络的PM2.5预测模型[J]. 测绘科学,2018,241(7): 87-93.
|
BOX G E,JENKINS G M. Time series analysis: forecasting and control rev. ed[J]. Journal of Time,1976,31(4): 238-242.
|
侯俊雄,李琦,朱亚杰,等. 基于随机森林的PM2.5实时预报系统[J]. 测绘科学,2017,42(1): 1-6.
|
GARCÍA NIETO P J,COMBARRO E F,DEL COZ DÍAZ J J,et al. A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): a case study[J]. Applied Mathematics & Computation,2013,219(17): 8923-8937.
|
HOOYBERGHS J,MENSINK C,DUMONT G,et al. A neural network forecast for daily average PM10 concentrations in Belgium[J]. Atmospheric Environment,2005,39(18): 3279-3289.
|
YU F,ZHANG W F,SUN D Z,et al. Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification[J]. Atmospheric Environment,2011,45(11): 1979-1985.
|
ZHAO J C,DENG F,CAI Y Y,et al. Long short-term memory-Fully connected (LSTM-FC) neural network for PM2.5 concentration prediction[J]. Chemosphere,2019,220: 486-492.
|
HUANG C J,KUO P H. A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities[J]. Sensors,2018,18(7): 2220-0000.
|
LIU X D,LIU Q,ZOU Y Y,et al. A self-organizing LSTM-based approach to PM2.5 forecast[C]//International Conference on Cloud Computing and Security.ACM,2018.
|
ZHENG Y,LIU F R,HSIEH H P. U-Air: when urban air quality inference meets big data[C]//Acm Sigkdd International Conference on Knowledge Discovery & Data Mining.ACM,2013.
|
ZHENG Y,CAPRA L,WOLFSON O,et al. Urban computing: concepts, methodologies, and applications[J]. Acm Transactions on Intelligent Systems & Technology,2014,5(3): 1-2.
|
ZHENG Y,YI X W,LI M,et al. Forecasting fine-grained air quality based on big data[C]//Acm Sigkdd International Conference on Knowledge Discovery & Data Mining.ACM,2015.
|
SU X,GOUGH W,SHEN Q.Correlation of PM2.5 and meteorological variables in Ontario cities: statistical downscaling method coupled with artificial neural network[C]//Longhurst J W S, Brebbia C A,Barnes J.24th International Conference on Modelling, Monitoring and Management of Air Pollution,Greece,2016:215-226.
|
张佳华,侯英雨,李贵才,等. 北京城市及周边热岛日变化及季节特征的卫星遥感研究与影响因子分析[J]. 中国科学:地球科学,2005,35(增刊1): 187-194.
|
ZHANG Y X,ZHANG Y M,WANG Y S,et al. PIXE characterization of PM10 and PM2.5 particulate matter collected during the winter season in Shanghai city[J].Journal of Radioanalytical & Nuclear Chemistry,2006,267(2): 497-499.
|
王清川,周贺玲,许敏,等. 河北省廊坊市大气污染扩散气象条件影响分析[J]. 防灾科技学院学报,2014,16(3): 1-8.
|