Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Xing-run, LI Lei, YANG Xiang-hua, TIAN Yong-qiang. PROGRESS IN REMEDIATION OF CHROMIUM-CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 1-8,23. doi: 10.13205/j.hjgc.202006001
Citation: YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029

LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING

doi: 10.13205/j.hjgc.202006029
  • Received Date: 2019-09-25
  • The prediction of PM2.5 can effectively prevent people from the harm by heavy pollution. However, the existing methods often emphasize the influence of local historical information and neglect the effect of spatial transport. In this paper, we proposed a method, called as long-short-term memory-convolutional neural network (LSTM-CNN), to predict PM2.5 concentration of a specific air quality monitoring station over 6 h using historical PM2.5 concentration data, historical weather data, and time stamp data. The model consisted of two parts: 1) using long-short-term memory networks to model the local variation of PM2.5 concentrations caused by local factors; 2) using one-dimensional convolutional neural networks to model the variation of PM2.5 concentrations caused by spatial transport. We randomly selected 7 monitoring stations in urban and rural areas in Beijing from May 1st 2014 to April 30th 2015 to conduct the evaluation of LSTM-CNN model. The results showed that the proposed LSTM-CNN model could provide a better prediction result than LSTM model, and a better result for monitoring stations in rural areas than those in urban areas.
  • KIOUMOURTZOGLOU M A,SCHWARTZ J,JAMES P,et al. PM2.5 and mortality in 207 US cities modification by temperature and city characteristics[J]. Epidemiology,2016,27(2): 221-227.
    中华人民共和国环保部.2015中国环境状况公报[Z]. 北京:[2016-06-01

    ].
    CHEN J J,LU J,AVISE J C,et al. Seasonal modeling of PM2.5 in California’s San Joaquin Valley[J]. Atmospheric Environment,2014,92: 182-190.
    WANG Z,MAEDA T,HAYASHI M,et al. A nested air quality prediction modeling system for urban and regional scales: application for high-ozone episode in Taiwan[J]. Water Air & Soil Pollution,2001,130(1/2/3/4): 391-396.
    SAIDE P E,CARMICHAEL G R,SPAK S N,et al. Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model[J]. Atmospheric Environment,2011,45(16): 2769-2780.
    LI X,PENG L,YAO X J,et al. Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation[J]. Environmental Pollution,2017,231(1): 997-1004.
    陈宁,毛善君,李德龙,等. 多基站协同训练神经网络的PM2.5预测模型[J]. 测绘科学,2018,241(7): 87-93.
    BOX G E,JENKINS G M. Time series analysis: forecasting and control rev. ed[J]. Journal of Time,1976,31(4): 238-242.
    侯俊雄,李琦,朱亚杰,等. 基于随机森林的PM2.5实时预报系统[J]. 测绘科学,2017,42(1): 1-6.
    GARCÍA NIETO P J,COMBARRO E F,DEL COZ DÍAZ J J,et al. A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): a case study[J]. Applied Mathematics & Computation,2013,219(17): 8923-8937.
    HOOYBERGHS J,MENSINK C,DUMONT G,et al. A neural network forecast for daily average PM10 concentrations in Belgium[J]. Atmospheric Environment,2005,39(18): 3279-3289.
    YU F,ZHANG W F,SUN D Z,et al. Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification[J]. Atmospheric Environment,2011,45(11): 1979-1985.
    ZHAO J C,DENG F,CAI Y Y,et al. Long short-term memory-Fully connected (LSTM-FC) neural network for PM2.5 concentration prediction[J]. Chemosphere,2019,220: 486-492.
    HUANG C J,KUO P H. A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities[J]. Sensors,2018,18(7): 2220-0000.
    LIU X D,LIU Q,ZOU Y Y,et al. A self-organizing LSTM-based approach to PM2.5 forecast[C]//International Conference on Cloud Computing and Security.ACM,2018.
    ZHENG Y,LIU F R,HSIEH H P. U-Air: when urban air quality inference meets big data[C]//Acm Sigkdd International Conference on Knowledge Discovery & Data Mining.ACM,2013.
    ZHENG Y,CAPRA L,WOLFSON O,et al. Urban computing: concepts, methodologies, and applications[J]. Acm Transactions on Intelligent Systems & Technology,2014,5(3): 1-2.
    ZHENG Y,YI X W,LI M,et al. Forecasting fine-grained air quality based on big data[C]//Acm Sigkdd International Conference on Knowledge Discovery & Data Mining.ACM,2015.
    SU X,GOUGH W,SHEN Q.Correlation of PM2.5 and meteorological variables in Ontario cities: statistical downscaling method coupled with artificial neural network[C]//Longhurst J W S, Brebbia C A,Barnes J.24th International Conference on Modelling, Monitoring and Management of Air Pollution,Greece,2016:215-226.
    张佳华,侯英雨,李贵才,等. 北京城市及周边热岛日变化及季节特征的卫星遥感研究与影响因子分析[J]. 中国科学:地球科学,2005,35(增刊1): 187-194.
    ZHANG Y X,ZHANG Y M,WANG Y S,et al. PIXE characterization of PM10 and PM2.5 particulate matter collected during the winter season in Shanghai city[J].Journal of Radioanalytical & Nuclear Chemistry,2006,267(2): 497-499.
    王清川,周贺玲,许敏,等. 河北省廊坊市大气污染扩散气象条件影响分析[J]. 防灾科技学院学报,2014,16(3): 1-8.
  • Relative Articles

    [1]CHEN Yating, ZHAO Xinyu, LI Yanhong, ZHANG Chuanyan, DANG Qiuling, XI Beidou. ENVIRONMENTAL BEHAVIOR AND RESTORATION PROGRESS OF EMERGING CONTAMINANTS IN CONTAMINATED SITES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 166-176. doi: 10.13205/j.hjgc.202401022
    [2]ZHANG Wei, TANG Yifan, WANG Chen, CHAI Senyou, ZUO Qiting. RESEARCH PROGRESS ON SOIL REPLACEMENT MEDIUM IN BIOLOGICAL RETENTION FACILITIES FOR SPONGE CITY CONSTRUCTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 277-285. doi: 10.13205/j.hjgc.202308035
    [3]CHEN Zhikang, LIU Liujun, YIN Lipu, YUE Rui, MAO Xuhui. RESEARCH PROGRESS OF ELECTRICAL RESISTANCE HEATING FOR SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 224-234,243. doi: 10.13205/j.hjgc.202204032
    [4]HUANG Xuan, GUO Bao-man, GU Ai-liang, ZHANG Yun, TIAN Tian, CENG Yue-chun. RESEARCH ADVANCES AND APPLICATION OF HORIZONTAL REMEDIATION WELLS IN SITE REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 262-269. doi: 10.13205/j.hjgc.202209035
    [5]HUANG Guoxin, LIU Ruiping, YANG Ruijie, ZHANG Tao, ZHANG Qiulei, WANG Xiahui, TIAN Zi, WANG Yipeng. RESEARCH PROCESS OF RISK MANAGEMENT AND CONTROL AND THEIR APPLICATION REQUIREMENTS FOR FARMLAND SOIL HEAVY METAL CONTAMINATION IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 216-223. doi: 10.13205/j.hjgc.202201031
    [6]WU Fan, NIU Dong-jie. REVIEW ON PREDICTIVE MODELS FOR MUNICIPAL SOLID WASTE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 128-133. doi: 10.13205/j.hjgc.202104020
    [7]LENG Guo-qin, TAO Tian-yi, YANG Yi-fan, CHEN Bo-li, SUN Zhi, HUANG Zhao-hui. INDIUM RECOVERY PROCESSES DEVELOPMENT FROM VARIOUS In-CONTAINING WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 142-149. doi: 10.13205/j.hjgc.202105020
    [8]LIANG Jing, WANG Shi-jie, ZHANG Wen-yu, ZHANG Dan, ZHANG Yuan, ZOU Hui. REVIEW ON CONTAMINATED SITE REMEDIATION TECHNOLOGIES IN THE USA AND THEIR REVELATION TO CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 173-178. doi: 10.13205/j.hjgc.202106026
    [9]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [10]GUO Li-li, KANG Shao-guo, WANG Qi, XIONG Jing, LI Shu-peng, KONG Jiao-yan. PERMEABLE REACTIVE BARRIER FOR CHROMIUM CONTAMINATED GROUNDWATER REMEDIATION:AN OVERVIEW[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 9-15. doi: 10.13205/j.hjgc.202006002
    [11]YANG Wen-xiao, ZHANG Li, BI Xue, LI Huan-ru, GU Qian. RESEARCH ADVANCEMENT OF STABILIZATION MATERIALS FOR HEXAVALENT CHROMIUM(Ⅵ) CONTAMINATED SITE SOILS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 16-23. doi: 10.13205/j.hjgc.202006003
    [12]ZHANG Ruo-shi, TIAN Yong-qiang. RESEARCH PROGRESS OF BIOSORPTION REMEDIATION TECHNOLOGIES FOR CHROMIUM CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 187-195. doi: 10.13205/j.hjgc.202011031
    [13]SUN Zeng-zhi, YANG Bao-shuai, GUAN Bo-wen, GAO Si-qi, DENG Chen-ji, CHEN Yu-hong. RESEARCH PROGRESS ON MECHANICAL PROPERTIES OF RECYCLED CONCRETE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 221-227. doi: 10.13205/j.hjgc.202006036
    [14]FENG Chao, WANG Yu, KONG Ling-rong, YUE Chang-sheng, YAO De-jun, WANG Zhi-qiao. ADVANCES OF SUPERCRITICAL WATER REMEDIATION TECHNOLOGY FOR ORGANIC POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 140-145. doi: 10.13205/j.hjgc.202010022
    [15]Deng Yirong, Lin Ting, Xiao Rongbo, Zhao Lu, Han Cunliang. RECENT ADVANCES IN THE APPLICATION OF EKR-PRB IN CONTAMINATED SITE REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 152-157. doi: 10.13205/j.hjgc.201510034
    [16]Yao Yuping Liu Hanxiao Zhu Shaoping, . STUDY ON PARTICULATE MATTER GRAVIMETRIC METHOD AT LOW CONCENTRATION FOR COAL-FIRED POWER PLANT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 139-142. doi: 10.13205/j.hjgc.201510031
    [17]Zhang Hongzhong, Huo Jing, Ma Chuang, Zhao Jihong, Liu Huanjia. THE PROGRESS OF RESEACH ON THE APPLICATION OF URBAN SLUDGE COMPOST FOR LAWN SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 92-95. doi: 10.13205/j.hjgc.201502020
    [18]Yang Yang Song Naiping Liu Bingru He Tonghui An Hui, . THE CURRENT STATUS AND PROGRESSES OF CHANGES IN LAND USE PATTERN ON AGRO-PASTORAL ECOTONE OF CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 158-162. doi: 10.13205/j.hjgc.201503031
    [19]Yin Zhen, Zhang Junchao, Liao Shulin, Ma Qiang, Wang Qingguo, Zhang Jinfeng. RESEARCH AND APPLICATION OF THE REMEDIATION TECHNOLOGY FOR THE CHROMIUM CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 159-162. doi: 10.13205/j.hjgc.201501037
  • Cited by

    Periodical cited type(4)

    1. 于嘉璐,卢美霞,何苗苗,魏玉珍,蔡立群,潘占东,孛永明,李旭春. 生物炭和凹凸棒土负载纳米零价铁去除水中六价铬的性能与机理研究. 环境科学学报. 2024(07): 127-136 .
    2. 王雷,李红霞,崔兴兰,史新悦,郑鹏,孙英春,杨晓莉. 某高原区典型铬污染场地人体健康风险评价. 铜业工程. 2024(06): 18-24 .
    3. 徐汝悦,王子霄,沈禄,吴蓉蓉,姚芳婷,谭中原,刘恒蔚,张文超. Cr(Ⅵ)的生物修复技术研究进展. 生物技术通报. 2023(06): 49-60 .
    4. 邱沙,宋景鹏,陈志国,白鹤,曹文庆,刘艺芸. 原位化学还原技术修复铬污染土壤及其工程应用. 环境科学与技术. 2021(04): 131-139 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.0 %FULLTEXT: 9.0 %META: 91.0 %META: 91.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.0 %其他: 8.0 %其他: 0.1 %其他: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 1.2 %China: 1.2 %Japan: 0.1 %Japan: 0.1 %Saitama: 0.1 %Saitama: 0.1 %Tuen Mun San Hui: 0.3 %Tuen Mun San Hui: 0.3 %United States: 0.3 %United States: 0.3 %[]: 0.6 %[]: 0.6 %上海: 5.5 %上海: 5.5 %东莞: 1.1 %东莞: 1.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.3 %临沂: 0.3 %丽水: 0.1 %丽水: 0.1 %丽江: 0.1 %丽江: 0.1 %乌兰察布: 0.1 %乌兰察布: 0.1 %乐山: 0.1 %乐山: 0.1 %佛山: 0.4 %佛山: 0.4 %保定: 0.6 %保定: 0.6 %信阳: 0.1 %信阳: 0.1 %兰州: 0.1 %兰州: 0.1 %凉山彝族自治州: 0.1 %凉山彝族自治州: 0.1 %北京: 11.5 %北京: 11.5 %十堰: 0.1 %十堰: 0.1 %南京: 3.5 %南京: 3.5 %南充: 0.3 %南充: 0.3 %南宁: 0.2 %南宁: 0.2 %南昌: 1.1 %南昌: 1.1 %南通: 0.2 %南通: 0.2 %南通市崇川区: 0.1 %南通市崇川区: 0.1 %厦门: 0.5 %厦门: 0.5 %台北: 0.3 %台北: 0.3 %台州: 0.6 %台州: 0.6 %合肥: 1.2 %合肥: 1.2 %吉林: 0.4 %吉林: 0.4 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %唐山: 0.2 %唐山: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %大同: 0.1 %大同: 0.1 %天津: 2.9 %天津: 2.9 %太原: 0.8 %太原: 0.8 %威海: 0.1 %威海: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.4 %宁波: 0.4 %安庆: 0.1 %安庆: 0.1 %安康: 0.1 %安康: 0.1 %安顺: 0.1 %安顺: 0.1 %宜昌: 0.1 %宜昌: 0.1 %宜春: 0.6 %宜春: 0.6 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.6 %宣城: 0.6 %宫城: 0.1 %宫城: 0.1 %巴中: 0.1 %巴中: 0.1 %常州: 0.6 %常州: 0.6 %常德: 0.3 %常德: 0.3 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.2 %广州: 1.2 %廊坊: 0.1 %廊坊: 0.1 %延安: 0.1 %延安: 0.1 %张家口: 1.3 %张家口: 1.3 %德州: 0.1 %德州: 0.1 %德阳: 0.1 %德阳: 0.1 %惠州: 0.2 %惠州: 0.2 %成都: 1.3 %成都: 1.3 %成都市双流区: 0.1 %成都市双流区: 0.1 %扬州: 0.3 %扬州: 0.3 %抚州: 0.1 %抚州: 0.1 %拉萨: 0.1 %拉萨: 0.1 %拉贾斯坦邦: 0.1 %拉贾斯坦邦: 0.1 %攀枝花: 0.1 %攀枝花: 0.1 %新乡: 0.3 %新乡: 0.3 %无锡: 0.5 %无锡: 0.5 %昆明: 0.8 %昆明: 0.8 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 3.9 %杭州: 3.9 %枣庄: 0.1 %枣庄: 0.1 %株洲: 1.0 %株洲: 1.0 %桂林: 0.4 %桂林: 0.4 %榆林: 0.1 %榆林: 0.1 %武汉: 2.6 %武汉: 2.6 %汕头: 0.1 %汕头: 0.1 %沈阳: 0.5 %沈阳: 0.5 %河源: 0.1 %河源: 0.1 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 1.3 %济南: 1.3 %济源: 0.1 %济源: 0.1 %海口: 0.1 %海口: 0.1 %淄博: 0.4 %淄博: 0.4 %淮北: 0.1 %淮北: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.5 %温州: 0.5 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.7 %漯河: 0.7 %潍坊: 0.1 %潍坊: 0.1 %潮州: 0.1 %潮州: 0.1 %濮阳: 0.1 %濮阳: 0.1 %烟台: 0.3 %烟台: 0.3 %眉山: 0.1 %眉山: 0.1 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.8 %福州: 0.8 %绍兴: 0.3 %绍兴: 0.3 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 5.9 %芒廷维尤: 5.9 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.6 %苏州: 0.6 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 4.7 %西宁: 4.7 %西安: 1.5 %西安: 1.5 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.2 %赣州: 0.2 %达州: 0.3 %达州: 0.3 %运城: 0.9 %运城: 0.9 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.1 %邯郸: 0.1 %邵阳: 0.1 %邵阳: 0.1 %郑州: 1.7 %郑州: 1.7 %鄂州: 0.1 %鄂州: 0.1 %重庆: 2.0 %重庆: 2.0 %金华: 0.1 %金华: 0.1 %银川: 0.1 %银川: 0.1 %锦州: 0.4 %锦州: 0.4 %镇江: 0.1 %镇江: 0.1 %长春: 0.4 %长春: 0.4 %长沙: 3.2 %长沙: 3.2 %长治: 0.3 %长治: 0.3 %阜新: 0.1 %阜新: 0.1 %阳泉: 0.1 %阳泉: 0.1 %陇南: 0.1 %陇南: 0.1 %青岛: 2.5 %青岛: 2.5 %韶关: 0.1 %韶关: 0.1 %香港特别行政区: 0.3 %香港特别行政区: 0.3 %鹰潭: 0.1 %鹰潭: 0.1 %黄冈: 0.1 %黄冈: 0.1 %黄石: 0.6 %黄石: 0.6 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他Central DistrictChinaJapanSaitamaTuen Mun San HuiUnited States[]上海东莞中山临汾临沂丽水丽江乌兰察布乐山佛山保定信阳兰州凉山彝族自治州北京十堰南京南充南宁南昌南通南通市崇川区厦门台北台州合肥吉林呼和浩特咸阳哈尔滨唐山嘉兴大同天津太原威海娄底宁波安庆安康安顺宜昌宜春宝鸡宣城宫城巴中常州常德平顶山广州廊坊延安张家口德州德阳惠州成都成都市双流区扬州抚州拉萨拉贾斯坦邦攀枝花新乡无锡昆明晋城朝阳杭州枣庄株洲桂林榆林武汉汕头沈阳河源泸州洛阳济南济源海口淄博淮北深圳温州湖州湘潭漯河潍坊潮州濮阳烟台眉山石家庄福州绍兴绵阳芒廷维尤芝加哥苏州葫芦岛衡水衡阳衢州襄阳西宁西安贵阳赣州达州运城遵义邯郸邵阳郑州鄂州重庆金华银川锦州镇江长春长沙长治阜新阳泉陇南青岛韶关香港特别行政区鹰潭黄冈黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (456) PDF downloads(3) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return