Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SUI Ke-jian, LI Jia-ju, LI Peng-feng, ZHOU Yong, ZHENG Xing-can, SUN Yong-li, SHANG Wei, TANG Li. STUDY ON DEEP DEPHOSPHORIZATION OF EFFLUENT FROM URBAN SEWAGE TREATMENT PLANT BY DISSOLVED AIR FLOATATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 66-70,65. doi: 10.13205/j.hjgc.202007010
Citation: SHAN Wei, WANG Yan, ZHENG Kai-kai, LI Ji. TECHNOLOGY COMPARISON AND ANALYSIS ON COD REMOVAL UPGRADING OF WASTEWATER TREATMENT PLANTS FOR HIGH PROPORTION OF INDUSTRY WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 32-37,24. doi: 10.13205/j.hjgc.202007005

TECHNOLOGY COMPARISON AND ANALYSIS ON COD REMOVAL UPGRADING OF WASTEWATER TREATMENT PLANTS FOR HIGH PROPORTION OF INDUSTRY WASTEWATER

doi: 10.13205/j.hjgc.202007005
  • Received Date: 2020-02-15
  • The dissolved refractory organic compounds with high concentration and complex components in wastewater were the problems encountered by many urban wastewater treatment plants (WWTPs) which occupied a relatively higher proportion of industrial wastewater, in the new round of upgrading. In this paper, four typical wastewater treatment plants in Taihu Basin were taken as the research objects, and the removal efficiency of COD by hydrolysis acidification and various advanced wastewater treatment technologies were analyzed. The results showed that hydrolytic acidification technology could improve the biodegradability of wastewater to a certain extent, and the addition of fillers could improve the effect. Moreover, the removal efficiency of the two advanced treatment technologies, coagulation sedimentation and membrane filtration, was only about 30%~35%. Furthermore, the mineralization ability of the ozone oxidation technology for the partial refractory organics was poor, so this technology was influenced by the organics in the influent. The adsorption of organics by activated carbon was universal, and in this study, the efficiency of adsorption of dissolved refractory organics in wastewater by activated carbon at empty bed hydraulic retention time (HRT) of 10 minutes was studied. It was found the COD of the effluent was stable at less than 20 mg/L. Besides, the operation cost of activated carbon adsorption process was high, and the regeneration and disposal of activated carbon should be considered. Therefore, the selection of COD advanced treatment process should be based on the influent quality, full technical demonstration under the premise of feasibility of small-scale and pilot scale test, and comprehensive consideration of construction, operation, land occupation, elevation and other factors to select the suitable technology for upgrading.
  • 马晔,田金平,陈吕军. 工业园区水管理创新研究[J]. 中国环境管理,2019,11(4):59-66.
    张文硕,张婷. 工业化与城镇化的发展历程分析[J]. 产业与科技论坛,2013,12(13):125-126.
    冒岩林,牟艳军,翁方芳.浅论工业废水的污染现状及防治措施[C]//浙江省环境科学学会.浙江省环境科学学会2014年学术年会论文集,杭州,2014.
    丁淳怡. 某工业废水处理厂综合废水优化处理的研究[D]. 苏州:苏州科技大学,2019.
    余杰, 彭应登, 赵淑霞, 等. 工业废水处理升级改造案例分析及其污染管理控制[C]//中华环保联合会.第十届环境与发展论坛论文集,北京,2014.
    陈新拓,王照丽,佘佳,等. 城市工业园区污水处理厂优化运维的思考[J]. 环境研究与监测,2019,32(3):28-31.
    王健行,魏源送,成宇涛,等. 颗粒活性炭深度处理抗生素废水[J].环境工程学报,2013,7(2):401-410.
    王森,李新平,张安龙,等. 膜分离技术深度处理造纸废水的研究[J]. 中国造纸学报,2013,28(2):15-18.
    胡洁,王乔,周珉,等. 芬顿和臭氧氧化法深度处理化工废水的对比研究[J]. 四川环境,2015,34(4):23-26.
    国家环境保护总局. 水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2002.
    王星,初里冰,丁鹏元,等. 微氧水解酸化处理石化废水的生物降解特性[J]. 环境科学学报,2015,35(1):161-167.
    黄华山. 微氧水解酸化-复合好氧工艺处理难降解工业废水研究[D]. 哈尔滨:哈尔滨工业大学,2008.
    SHER F, MALIK A, LIU H. Industrial polymer effluent treatment by chemical coagulation and flocculation[J]. Journal of Environmental Chemical Engineering, 2013,1(4):684-689.
    李德钟,冀雅琬,刘伟,等. 高COD枣加工生产废水预处理实验[J]. 水处理技术,2018,44(4):66-68.
    李慧,王开厅,孔祥帅,等. 膜分离技术处理航天废水[J]. 化工进展,2019,38(增刊1):247-251.
    程雯,全学军,罗丹,等. 微泡强化臭氧传质及其对产生羟基自由基的影响[J]. 化学反应工程与工艺, 2017,33(5):458-465.
    张帆,李菁,谭建华,等. 吸附法处理重金属废水的研究进展[J]. 化工进展,2013,32(11):2749-2756.
    孙媛媛. 芦竹活性炭的制备、表征及吸附性能研究[D]. 济南:山东大学,2014.
  • Relative Articles

    [1]JIN Hongyi, Tang Xueping, Zhuang Mazhan, Gong Chunming, Wu Xiaohai, LI Fei, ZHOU Zhenming. PREPARATION OF PHOSPHORUS REMOVAL MATERIAL BY CALCINATION OF WATER TREATMENT PLANT SLUDGE AND RIVER SILT AND ITS PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 209-217. doi: 10.13205/j.hjgc.202308027
    [2]NIU Yongjian, DONG Kun, NIU Hongliang, XIN Mingxing, LI Weiwei, SUN Hongwei. EFFECT OF FREE AMMONIA ON PHOSPHORUS REMOVAL EFFICIENCY AND MICROBIAL COMMUNITY STRUCTURE IN AN EBPR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 24-31. doi: 10.13205/j.hjgc.202210004
    [3]JIA Kaixue, XU Shaoqi, WEI Zimin, CHEN Wenjie, ZHAN Yabin, SHI Xiong, LI Ji, WEI Yuquan. REVIEW ON PHOSPHORUS FRACTIONS TRANSFORMATION IN COMPOSTING ENHANCED BY PHOSPHORUS-SOLUBILIZING MICROORGANISMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 89-97. doi: 10.13205/j.hjgc.202212012
    [4]PAN Jun, SUN Bo-yang, WEI Wei, ZHANG Jin, TAN Shuai-chen, LI Rui-fang. EXPERIMENT OF MICRO-POLLUTED WATER TREATMENT BY COMBINED TECHNOLOGY OF MICRO-NANO AERATION-ECOLOGICAL FLOATING WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 49-53,209. doi: 10.13205/j.hjgc.202005009
    [11]Wang Yadong, Wang Shaopo, Zheng Shasha, Zhang Yan, Sun Liping, Du Jinshan. POLY-P ACCUMULATING MICROORGANISMS AND IDENTIFYING METHODS FOR BIOLOGICAL PHOSPHORUS REMOVAL SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 21-26. doi: 10.13205/j.hjgc.201502005
  • Cited by

    Periodical cited type(13)

    1. 蔺鸿涛,龚为进,陶辰瀚,祁超智,黄磊,余正洋. 多金属改性生物炭磷吸附性能和动力学研究. 山东化工. 2025(03): 23-27 .
    2. 蔺鸿涛,龚为进,陶辰瀚,祁超智,黄磊,余正洋. 镧改性市政污泥生物炭制备及磷吸附性能研究. 中原工学院学报. 2025(01): 45-52 .
    3. 王凡滔,陈贇,魏璟馨,李世琦,刘亚佺,冯岩. 城市污水极限除磷研究现状. 工业用水与废水. 2024(04): 7-11 .
    4. 曾伟,吴幼娥,丁嘉培,王伟浩,赵会芳. 贵州某酱香型白酒废水尾水处理工程设计. 天津化工. 2024(05): 106-109 .
    5. 曾超,刘影,陈圆,陈积义,徐菡玲,刘阳,文宇鸿,杨淇椋,古伟,王文明. 某再生水厂两期脱氮除磷工艺设计及效能分析. 中国给水排水. 2024(18): 64-70 .
    6. 葛绍阳,陆宾,花发奇. 气浮工艺在工业废水处理中的应用研究. 山西化工. 2024(11): 265-267 .
    7. 尚雄,李正远,普家和,夏钰,周富聪. 昆明A污水处理厂气浮除磷技术提标改造项目试运行效果浅析. 广州化工. 2023(16): 106-109 .
    8. 陈奇良. 高效气浮在污水厂极限除磷提标设计中的应用. 广州化工. 2022(06): 124-126 .
    9. 杨璐阳,丁冠文,戴浩然,邱慧. 一种水热稳定的金属有机骨架UiO-66高效捕获水中磷酸盐的性能及机理. 环境化学. 2022(05): 1746-1756 .
    10. 吴晓波,雷文江,谭云鹏. 无锡市胡埭污水处理厂提标改造方案研究. 城市道桥与防洪. 2022(04): 119-121+129+17 .
    11. 沈怡,王佳音,陈冠辉. 溶气气浮技术在市政污水深度处理工程设计与应用. 辽宁化工. 2022(09): 1253-1256 .
    12. 谭心,邹晓凤,苏强,于军. 污水处理厂尾水深度除磷技术综述. 山东化工. 2021(16): 277-279 .
    13. 邸超. EBIS工艺在化工污水处理中的应用. 化学工程与装备. 2021(09): 255-256+51 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.8 %FULLTEXT: 7.8 %META: 89.1 %META: 89.1 %PDF: 3.0 %PDF: 3.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.2 %其他: 8.2 %其他: 0.4 %其他: 0.4 %Canada: 0.5 %Canada: 0.5 %China: 2.5 %China: 2.5 %Czech Republic: 0.4 %Czech Republic: 0.4 %Netherlands: 0.2 %Netherlands: 0.2 %Spain: 0.2 %Spain: 0.2 %[]: 0.2 %[]: 0.2 %上海: 2.0 %上海: 2.0 %东莞: 2.1 %东莞: 2.1 %临汾: 0.2 %临汾: 0.2 %保定: 0.7 %保定: 0.7 %六安: 0.4 %六安: 0.4 %北京: 6.6 %北京: 6.6 %十堰: 1.2 %十堰: 1.2 %南京: 1.2 %南京: 1.2 %南充: 0.4 %南充: 0.4 %南宁: 0.2 %南宁: 0.2 %南昌: 0.2 %南昌: 0.2 %合肥: 0.2 %合肥: 0.2 %吉安: 1.1 %吉安: 1.1 %呼伦贝尔: 0.2 %呼伦贝尔: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %大同: 0.2 %大同: 0.2 %大连: 0.9 %大连: 0.9 %天津: 2.7 %天津: 2.7 %太原: 0.2 %太原: 0.2 %宁波: 0.4 %宁波: 0.4 %安庆: 0.2 %安庆: 0.2 %宣城: 0.7 %宣城: 0.7 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 2.1 %广州: 2.1 %廊坊: 0.4 %廊坊: 0.4 %张家口: 1.2 %张家口: 1.2 %徐州: 0.2 %徐州: 0.2 %惠州: 0.2 %惠州: 0.2 %成都: 0.7 %成都: 0.7 %扬州: 1.8 %扬州: 1.8 %拉贾斯坦邦: 0.2 %拉贾斯坦邦: 0.2 %新乡: 0.2 %新乡: 0.2 %无锡: 0.5 %无锡: 0.5 %昆明: 0.4 %昆明: 0.4 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 2.0 %杭州: 2.0 %武汉: 0.4 %武汉: 0.4 %济源: 0.2 %济源: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 0.4 %温州: 0.4 %湖州: 0.2 %湖州: 0.2 %漯河: 5.2 %漯河: 5.2 %潍坊: 0.2 %潍坊: 0.2 %石家庄: 0.7 %石家庄: 0.7 %福州: 0.7 %福州: 0.7 %秦皇岛: 0.2 %秦皇岛: 0.2 %美国: 0.2 %美国: 0.2 %芒廷维尤: 15.9 %芒廷维尤: 15.9 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %衢州: 0.5 %衢州: 0.5 %西宁: 20.3 %西宁: 20.3 %西安: 0.2 %西安: 0.2 %贵阳: 0.9 %贵阳: 0.9 %运城: 1.2 %运城: 1.2 %连云港: 0.4 %连云港: 0.4 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.2 %郑州: 1.2 %重庆: 0.4 %重庆: 0.4 %锡林郭勒盟: 0.4 %锡林郭勒盟: 0.4 %镇江: 0.4 %镇江: 0.4 %长春: 0.4 %长春: 0.4 %长沙: 1.2 %长沙: 1.2 %长治: 0.4 %长治: 0.4 %阳泉: 1.2 %阳泉: 1.2 %青岛: 0.2 %青岛: 0.2 %其他其他CanadaChinaCzech RepublicNetherlandsSpain[]上海东莞临汾保定六安北京十堰南京南充南宁南昌合肥吉安呼伦贝尔呼和浩特嘉兴大同大连天津太原宁波安庆宣城常州常德广州廊坊张家口徐州惠州成都扬州拉贾斯坦邦新乡无锡昆明晋城朝阳杭州武汉济源深圳温州湖州漯河潍坊石家庄福州秦皇岛美国芒廷维尤芝加哥苏州衢州西宁西安贵阳运城连云港遵义邯郸郑州重庆锡林郭勒盟镇江长春长沙长治阳泉青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (705) PDF downloads(23) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return