Citation: | LIU Guo-hua, PANG Yu-min, QI Lu, WANG Hong-chen. N2O EMISSION CHARACTERISTICS DURING BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER IN A SBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 51-57. doi: 10.13205/j.hjgc.202007008 |
LEVINE J S, ALLARIO F. The global troposphere:biogeochemical cycles, chemistry, and remote sensing[J]. Environmental Monitoring and Assessment, 1982, 1(3):263-306.
|
JOEL S. Levine. Water and the Photochemistry of the Troposphere[M]. In:Satellite Sensing of a Cloudy Atmosphere:Observing the Third Planet. Handerson-Sellers A. (ed.), Tayoler & Francis, Ltd., London, 1984, 123-166.
|
NODA N, KANEKO M, MIKAMI Y, et al. Effects of SRT and DO on N2O reductase activity in an anoxic-oxic activated sludge system[J]. Water Science and Technology, 2003, 48(11/12):363-370.
|
KUENEN G, ROBERTSON L A. Combined nitrificationdenitrification processes[J]. FEMS Microbiology Reviews, 1994, 15(2/3):109-117.
|
IPCC. The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the intergovernmental Panel on Climate Change[M]. Cambridge, UK:Cambridge University Press, 2001.
|
FRIJNS J, ROORDA J, MULDER M. Op weg naar een klimaatneutrale waterketen[J]. H2O, 2008,41(10):36-37.
|
LAW Y Y, NI B J, LANT P, et al. N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate[J]. Water Research, 2012, 46(10):3409-3419.
|
CHUNG Y C, CHUNG M S. BNP test to evaluate the influence of C/N ratio on N2O production in biological denitrification[J]. Water Science and Technology, 2000,42(3):23-27.
|
SATOSHI T, MAKIO M, YUZURU K, et al. Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater[J]. Journal of Hazardous Materials, 2005, 119(1):93-98.
|
GAËLLE T, JOSETTE G, GILLES B, et al. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants:effect of oxygenation level[J]. Water Research, 2006, 40(15):2972-2980.
|
MARLIES J K, NICO C G T, ROBBERT K, et al. Effect of dynamic process conditions on nitrogen oxides emission from anitrifying culture[J]. Environmental Science & Technology, 2008, 42(2):429-435.
|
MARLIES J K, HARDY T, ROBBERT K, et al. Nitrous oxide emission during wastewater treatment[J]. Water Research, 2009, 43(17):4093-4103.
|
MARK P, DENNIS D F. 15N kinetic analysis of N2O production by nitrosomonas europaea:an examination of nitrifier denitrification[J]. Applied and Environmental Microbiology, 1985, 49(5):1134-1141.
|
PASCAL W, JOACHIM M, ADRIANO J, et al. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions[J]. Water Research, 2012, 46(4):1027-1037.
|
LAW Y Y, YE L, PAN Y T, et al. Nitrous oxide emissions from wastewater treatment processes[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2012, 367:1265-1277.
|
ASMA A, NOUCEIBA A, FABRICE B, et al. Nitrite effect on nitrous oxide emission from denitrifying activated sludge[J]. Process Biochemistry, 2008, 43(6):683-689.
|
PAN Y T, YE L, NI B J, et al. Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Water Research, 2012, 46(15):4832-4840.
|
ROMAIN L, RIKKE M, ANNELIES T, et al. Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal[J]. Journal of Biotechnology, 2006, 122(1):62-72.
|
YANG Q, LIU X H, PENG C Y, et al. N2O production during nitrogen removal via nitrite from domestic wastewater:main sources and controlmethod[J]. Environmental Science and Technology, 2009, 43(24):9400-9406.
|
HU Z, ZHANG J, LI S P, et al. Effect of aeration rate on the emission of N2O in anoxic-aerobic sequencing batch reactors (A/O SBRs)[J]. Journal of Bioscience and Bioengineering, 2010, 109(5):487-491.
|
ZHOU J Z, BRUNS M A, TIEDJE J M. DNA Recovery from soils of diverse composition[J]. Applied and Environmental Microbiology, 1996, 62(2):316-322.
|
MUYZER G, de WALL E C, UITTERLINDEN A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59(3):695-700.
|
TAMURA K, STECHER G, PETERSON D, et al. MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12):2725-2729.
|
VAN RIJN J, TAL Y, BARAK Y. Influence of volatile fatty acids on nitrite accumulation by a pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor[J]. Applied Environmental Microbiology, 1996, 62(7):2615-2620.
|
HANAKI K, HONG Z, MATSUO T. Production of nitrous oxide gas during denitrification of wastewater[J]. Water Science and Technology, 1992, 26(5/6):1027-1036.
|
ITOKAWA H, HANAKI K, MATSUO T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition[J]. Water Research, 2001, 35(3):657-664.
|
ZHENG H, HANAKI K, MATSUO T. Production of nitrous oxide gas during nitrification of wasterwater[J]. Water Science Technology, 1994, 30(6):133-141.
|
ZHOU Y, PIJUAN M, ZENG R J, et al. Free nitrous acid inhibitiononnitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge[J]. Environmental Science and Technology, 2008, 42(22):8260-8265.
|
SCHULTHESS R V, WILD D, GUJER W. Nitric and nitrous oxides from denitrifying activated sludge at low oxygen concentration[J]. Water Science and Technology, 1994, 30(6):123-132.
|
WRAGE N, VELTHOF G L, BEUSICHEM M L V, et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology & Biochemistry, 2001, 33(12):1723-1732.
|
EBERHARD B, INGO S, RALF S, et al. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor[J]. Archives of Microbiology, 1995, 163(1):16-20.
|
JETTEN M S M, STROUS M, DE PAS-SCHOONENAJOS K T, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1999, 22(5):421-437.
|
ROEST K, HEILIG H G H J, SMIDT H, et al. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater[J]. Systematic & Applied Microbiology, 2005, 28(2):175-185.
|
CONNAUGHTON S, COLLINS G, O'FLAHERTY V. Development of microbial community structure and actvity in a high-rate anaerobic bioreactor at 18 degrees C[J]. Water Research, 2006, 40(5):1009-1017.
|
SANZ J L. Thorsten Kchling. Molecular biology techniques used in wastewater treatment:an overview[J]. Process Biochemistry, 2007, 42(2):119-133.
|
阳丽香. 环境因子对好氧反硝化菌活性及其功能基因表达的影响[D]. 广州:华南师范大学, 2010.
|
BERKS B C,BARATTA D, RICHARDSON J. Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha-Implications for the mechanism of aerobic nitrous oxide reduction[J]. European Journal of Biochemistry, 1993, 212(2):467-476.
|
BAUMANN B, SNOZZI M, ZEHNDER A J, et al. Dynamics of denitrification activity of paracoccus denitrificans in continuous culture during aerobic-anaerobic changes[J]. European Journal of Biochemistry, 1996, 178(15):4367-4374.
|
MARC R, JAMES U. Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor[J]. Systematic & Applied Microbiology, 2005, 28(5):421-429.
|
PATUREAU D, GODON J J, DABERT P, et al. Microvirgula aerodenitrificans gen. nov. sp. nov. a new Gram-negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up to oxygen-saturated conditions[J]. International Journal of Systematic Bacteriology, 1998, 48(3):775-782.
|
巩有奎, 王淑莹, 彭永臻,等. 低氧条件下生物反硝化过程中N2O的产量[J]. 化工学报,2011,62(6):1688-1692.
|
[1] | JIN Hongyi, Tang Xueping, Zhuang Mazhan, Gong Chunming, Wu Xiaohai, LI Fei, ZHOU Zhenming. PREPARATION OF PHOSPHORUS REMOVAL MATERIAL BY CALCINATION OF WATER TREATMENT PLANT SLUDGE AND RIVER SILT AND ITS PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 209-217. doi: 10.13205/j.hjgc.202308027 |
[2] | NIU Yongjian, DONG Kun, NIU Hongliang, XIN Mingxing, LI Weiwei, SUN Hongwei. EFFECT OF FREE AMMONIA ON PHOSPHORUS REMOVAL EFFICIENCY AND MICROBIAL COMMUNITY STRUCTURE IN AN EBPR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 24-31. doi: 10.13205/j.hjgc.202210004 |
[3] | JIA Kaixue, XU Shaoqi, WEI Zimin, CHEN Wenjie, ZHAN Yabin, SHI Xiong, LI Ji, WEI Yuquan. REVIEW ON PHOSPHORUS FRACTIONS TRANSFORMATION IN COMPOSTING ENHANCED BY PHOSPHORUS-SOLUBILIZING MICROORGANISMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 89-97. doi: 10.13205/j.hjgc.202212012 |
[4] | PAN Jun, SUN Bo-yang, WEI Wei, ZHANG Jin, TAN Shuai-chen, LI Rui-fang. EXPERIMENT OF MICRO-POLLUTED WATER TREATMENT BY COMBINED TECHNOLOGY OF MICRO-NANO AERATION-ECOLOGICAL FLOATING WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 49-53,209. doi: 10.13205/j.hjgc.202005009 |
[11] | Wang Yadong, Wang Shaopo, Zheng Shasha, Zhang Yan, Sun Liping, Du Jinshan. POLY-P ACCUMULATING MICROORGANISMS AND IDENTIFYING METHODS FOR BIOLOGICAL PHOSPHORUS REMOVAL SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 21-26. doi: 10.13205/j.hjgc.201502005 |