Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SUI Ke-jian, LI Jia-ju, LI Peng-feng, ZHOU Yong, ZHENG Xing-can, SUN Yong-li, SHANG Wei, TANG Li. STUDY ON DEEP DEPHOSPHORIZATION OF EFFLUENT FROM URBAN SEWAGE TREATMENT PLANT BY DISSOLVED AIR FLOATATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 66-70,65. doi: 10.13205/j.hjgc.202007010
Citation: LIU Guo-hua, PANG Yu-min, QI Lu, WANG Hong-chen. N2O EMISSION CHARACTERISTICS DURING BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER IN A SBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 51-57. doi: 10.13205/j.hjgc.202007008

N2O EMISSION CHARACTERISTICS DURING BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER IN A SBR SYSTEM

doi: 10.13205/j.hjgc.202007008
  • Received Date: 2020-04-05
  • N2O is a typical greenhouse gas, and contributes severely to global warming. The process for biological nitrogen removal from wastewater is considered as an important source of N2O emission. The present study investigated the characteristics and main source of N2O in a SBR system, with an anoxic-aerobic (A/O) running mode. The results showed that N2O emission occurred mainly during the aerobic phase in the A/O SBR system. The maximum N2O emission rate reached 2.02 μg/(min·g), and the cumulative N2O emission during the aerobic phase was 8.2 mg, then the nitrite accumulation concentrate was observed to get the highest value of 7.5 mg/L after 120-minite operation. On the basis of bacterial community analysis, the bacteria in the dominant DGGE bands were identified as Flavobacteria, some of which was found to be aerobic denitrifying bacteria. It was inferred that the accumulation of nitrite might inhibit the activity of nitrous oxide reductase (Nos) from aerobic denitrifying bacteria and lead to N2O emission. The accumulation of nitrite should be avoided or reduced in real biological wastewater treatment process.
  • LEVINE J S, ALLARIO F. The global troposphere:biogeochemical cycles, chemistry, and remote sensing[J]. Environmental Monitoring and Assessment, 1982, 1(3):263-306.
    JOEL S. Levine. Water and the Photochemistry of the Troposphere[M]. In:Satellite Sensing of a Cloudy Atmosphere:Observing the Third Planet. Handerson-Sellers A. (ed.), Tayoler & Francis, Ltd., London, 1984, 123-166.
    NODA N, KANEKO M, MIKAMI Y, et al. Effects of SRT and DO on N2O reductase activity in an anoxic-oxic activated sludge system[J]. Water Science and Technology, 2003, 48(11/12):363-370.
    KUENEN G, ROBERTSON L A. Combined nitrificationdenitrification processes[J]. FEMS Microbiology Reviews, 1994, 15(2/3):109-117.
    IPCC. The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the intergovernmental Panel on Climate Change[M]. Cambridge, UK:Cambridge University Press, 2001.
    FRIJNS J, ROORDA J, MULDER M. Op weg naar een klimaatneutrale waterketen[J]. H2O, 2008,41(10):36-37.
    LAW Y Y, NI B J, LANT P, et al. N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate[J]. Water Research, 2012, 46(10):3409-3419.
    CHUNG Y C, CHUNG M S. BNP test to evaluate the influence of C/N ratio on N2O production in biological denitrification[J]. Water Science and Technology, 2000,42(3):23-27.
    SATOSHI T, MAKIO M, YUZURU K, et al. Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater[J]. Journal of Hazardous Materials, 2005, 119(1):93-98.
    GAËLLE T, JOSETTE G, GILLES B, et al. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants:effect of oxygenation level[J]. Water Research, 2006, 40(15):2972-2980.
    MARLIES J K, NICO C G T, ROBBERT K, et al. Effect of dynamic process conditions on nitrogen oxides emission from anitrifying culture[J]. Environmental Science & Technology, 2008, 42(2):429-435.
    MARLIES J K, HARDY T, ROBBERT K, et al. Nitrous oxide emission during wastewater treatment[J]. Water Research, 2009, 43(17):4093-4103.
    MARK P, DENNIS D F. 15N kinetic analysis of N2O production by nitrosomonas europaea:an examination of nitrifier denitrification[J]. Applied and Environmental Microbiology, 1985, 49(5):1134-1141.
    PASCAL W, JOACHIM M, ADRIANO J, et al. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions[J]. Water Research, 2012, 46(4):1027-1037.
    LAW Y Y, YE L, PAN Y T, et al. Nitrous oxide emissions from wastewater treatment processes[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2012, 367:1265-1277.
    ASMA A, NOUCEIBA A, FABRICE B, et al. Nitrite effect on nitrous oxide emission from denitrifying activated sludge[J]. Process Biochemistry, 2008, 43(6):683-689.
    PAN Y T, YE L, NI B J, et al. Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Water Research, 2012, 46(15):4832-4840.
    ROMAIN L, RIKKE M, ANNELIES T, et al. Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal[J]. Journal of Biotechnology, 2006, 122(1):62-72.
    YANG Q, LIU X H, PENG C Y, et al. N2O production during nitrogen removal via nitrite from domestic wastewater:main sources and controlmethod[J]. Environmental Science and Technology, 2009, 43(24):9400-9406.
    HU Z, ZHANG J, LI S P, et al. Effect of aeration rate on the emission of N2O in anoxic-aerobic sequencing batch reactors (A/O SBRs)[J]. Journal of Bioscience and Bioengineering, 2010, 109(5):487-491.
    ZHOU J Z, BRUNS M A, TIEDJE J M. DNA Recovery from soils of diverse composition[J]. Applied and Environmental Microbiology, 1996, 62(2):316-322.
    MUYZER G, de WALL E C, UITTERLINDEN A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59(3):695-700.
    TAMURA K, STECHER G, PETERSON D, et al. MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12):2725-2729.
    VAN RIJN J, TAL Y, BARAK Y. Influence of volatile fatty acids on nitrite accumulation by a pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor[J]. Applied Environmental Microbiology, 1996, 62(7):2615-2620.
    HANAKI K, HONG Z, MATSUO T. Production of nitrous oxide gas during denitrification of wastewater[J]. Water Science and Technology, 1992, 26(5/6):1027-1036.
    ITOKAWA H, HANAKI K, MATSUO T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition[J]. Water Research, 2001, 35(3):657-664.
    ZHENG H, HANAKI K, MATSUO T. Production of nitrous oxide gas during nitrification of wasterwater[J]. Water Science Technology, 1994, 30(6):133-141.
    ZHOU Y, PIJUAN M, ZENG R J, et al. Free nitrous acid inhibitiononnitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge[J]. Environmental Science and Technology, 2008, 42(22):8260-8265.
    SCHULTHESS R V, WILD D, GUJER W. Nitric and nitrous oxides from denitrifying activated sludge at low oxygen concentration[J]. Water Science and Technology, 1994, 30(6):123-132.
    WRAGE N, VELTHOF G L, BEUSICHEM M L V, et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology & Biochemistry, 2001, 33(12):1723-1732.
    EBERHARD B, INGO S, RALF S, et al. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor[J]. Archives of Microbiology, 1995, 163(1):16-20.
    JETTEN M S M, STROUS M, DE PAS-SCHOONENAJOS K T, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1999, 22(5):421-437.
    ROEST K, HEILIG H G H J, SMIDT H, et al. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater[J]. Systematic & Applied Microbiology, 2005, 28(2):175-185.
    CONNAUGHTON S, COLLINS G, O'FLAHERTY V. Development of microbial community structure and actvity in a high-rate anaerobic bioreactor at 18 degrees C[J]. Water Research, 2006, 40(5):1009-1017.
    SANZ J L. Thorsten Kchling. Molecular biology techniques used in wastewater treatment:an overview[J]. Process Biochemistry, 2007, 42(2):119-133.
    阳丽香. 环境因子对好氧反硝化菌活性及其功能基因表达的影响[D]. 广州:华南师范大学, 2010.
    BERKS B C,BARATTA D, RICHARDSON J. Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha-Implications for the mechanism of aerobic nitrous oxide reduction[J]. European Journal of Biochemistry, 1993, 212(2):467-476.
    BAUMANN B, SNOZZI M, ZEHNDER A J, et al. Dynamics of denitrification activity of paracoccus denitrificans in continuous culture during aerobic-anaerobic changes[J]. European Journal of Biochemistry, 1996, 178(15):4367-4374.
    MARC R, JAMES U. Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor[J]. Systematic & Applied Microbiology, 2005, 28(5):421-429.
    PATUREAU D, GODON J J, DABERT P, et al. Microvirgula aerodenitrificans gen. nov. sp. nov. a new Gram-negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up to oxygen-saturated conditions[J]. International Journal of Systematic Bacteriology, 1998, 48(3):775-782.
    巩有奎, 王淑莹, 彭永臻,等. 低氧条件下生物反硝化过程中N2O的产量[J]. 化工学报,2011,62(6):1688-1692.
  • Relative Articles

    [1]JIN Hongyi, Tang Xueping, Zhuang Mazhan, Gong Chunming, Wu Xiaohai, LI Fei, ZHOU Zhenming. PREPARATION OF PHOSPHORUS REMOVAL MATERIAL BY CALCINATION OF WATER TREATMENT PLANT SLUDGE AND RIVER SILT AND ITS PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 209-217. doi: 10.13205/j.hjgc.202308027
    [2]NIU Yongjian, DONG Kun, NIU Hongliang, XIN Mingxing, LI Weiwei, SUN Hongwei. EFFECT OF FREE AMMONIA ON PHOSPHORUS REMOVAL EFFICIENCY AND MICROBIAL COMMUNITY STRUCTURE IN AN EBPR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 24-31. doi: 10.13205/j.hjgc.202210004
    [3]JIA Kaixue, XU Shaoqi, WEI Zimin, CHEN Wenjie, ZHAN Yabin, SHI Xiong, LI Ji, WEI Yuquan. REVIEW ON PHOSPHORUS FRACTIONS TRANSFORMATION IN COMPOSTING ENHANCED BY PHOSPHORUS-SOLUBILIZING MICROORGANISMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 89-97. doi: 10.13205/j.hjgc.202212012
    [4]PAN Jun, SUN Bo-yang, WEI Wei, ZHANG Jin, TAN Shuai-chen, LI Rui-fang. EXPERIMENT OF MICRO-POLLUTED WATER TREATMENT BY COMBINED TECHNOLOGY OF MICRO-NANO AERATION-ECOLOGICAL FLOATING WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 49-53,209. doi: 10.13205/j.hjgc.202005009
    [11]Wang Yadong, Wang Shaopo, Zheng Shasha, Zhang Yan, Sun Liping, Du Jinshan. POLY-P ACCUMULATING MICROORGANISMS AND IDENTIFYING METHODS FOR BIOLOGICAL PHOSPHORUS REMOVAL SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 21-26. doi: 10.13205/j.hjgc.201502005
  • Cited by

    Periodical cited type(13)

    1. 蔺鸿涛,龚为进,陶辰瀚,祁超智,黄磊,余正洋. 多金属改性生物炭磷吸附性能和动力学研究. 山东化工. 2025(03): 23-27 .
    2. 蔺鸿涛,龚为进,陶辰瀚,祁超智,黄磊,余正洋. 镧改性市政污泥生物炭制备及磷吸附性能研究. 中原工学院学报. 2025(01): 45-52 .
    3. 王凡滔,陈贇,魏璟馨,李世琦,刘亚佺,冯岩. 城市污水极限除磷研究现状. 工业用水与废水. 2024(04): 7-11 .
    4. 曾伟,吴幼娥,丁嘉培,王伟浩,赵会芳. 贵州某酱香型白酒废水尾水处理工程设计. 天津化工. 2024(05): 106-109 .
    5. 曾超,刘影,陈圆,陈积义,徐菡玲,刘阳,文宇鸿,杨淇椋,古伟,王文明. 某再生水厂两期脱氮除磷工艺设计及效能分析. 中国给水排水. 2024(18): 64-70 .
    6. 葛绍阳,陆宾,花发奇. 气浮工艺在工业废水处理中的应用研究. 山西化工. 2024(11): 265-267 .
    7. 尚雄,李正远,普家和,夏钰,周富聪. 昆明A污水处理厂气浮除磷技术提标改造项目试运行效果浅析. 广州化工. 2023(16): 106-109 .
    8. 陈奇良. 高效气浮在污水厂极限除磷提标设计中的应用. 广州化工. 2022(06): 124-126 .
    9. 杨璐阳,丁冠文,戴浩然,邱慧. 一种水热稳定的金属有机骨架UiO-66高效捕获水中磷酸盐的性能及机理. 环境化学. 2022(05): 1746-1756 .
    10. 吴晓波,雷文江,谭云鹏. 无锡市胡埭污水处理厂提标改造方案研究. 城市道桥与防洪. 2022(04): 119-121+129+17 .
    11. 沈怡,王佳音,陈冠辉. 溶气气浮技术在市政污水深度处理工程设计与应用. 辽宁化工. 2022(09): 1253-1256 .
    12. 谭心,邹晓凤,苏强,于军. 污水处理厂尾水深度除磷技术综述. 山东化工. 2021(16): 277-279 .
    13. 邸超. EBIS工艺在化工污水处理中的应用. 化学工程与装备. 2021(09): 255-256+51 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.8 %FULLTEXT: 7.8 %META: 89.1 %META: 89.1 %PDF: 3.0 %PDF: 3.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.2 %其他: 8.2 %其他: 0.4 %其他: 0.4 %Canada: 0.5 %Canada: 0.5 %China: 2.5 %China: 2.5 %Czech Republic: 0.4 %Czech Republic: 0.4 %Netherlands: 0.2 %Netherlands: 0.2 %Spain: 0.2 %Spain: 0.2 %[]: 0.2 %[]: 0.2 %上海: 2.0 %上海: 2.0 %东莞: 2.1 %东莞: 2.1 %临汾: 0.2 %临汾: 0.2 %保定: 0.7 %保定: 0.7 %六安: 0.4 %六安: 0.4 %北京: 6.6 %北京: 6.6 %十堰: 1.2 %十堰: 1.2 %南京: 1.2 %南京: 1.2 %南充: 0.4 %南充: 0.4 %南宁: 0.2 %南宁: 0.2 %南昌: 0.2 %南昌: 0.2 %合肥: 0.2 %合肥: 0.2 %吉安: 1.1 %吉安: 1.1 %呼伦贝尔: 0.2 %呼伦贝尔: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %大同: 0.2 %大同: 0.2 %大连: 0.9 %大连: 0.9 %天津: 2.7 %天津: 2.7 %太原: 0.2 %太原: 0.2 %宁波: 0.4 %宁波: 0.4 %安庆: 0.2 %安庆: 0.2 %宣城: 0.7 %宣城: 0.7 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 2.1 %广州: 2.1 %廊坊: 0.4 %廊坊: 0.4 %张家口: 1.2 %张家口: 1.2 %徐州: 0.2 %徐州: 0.2 %惠州: 0.2 %惠州: 0.2 %成都: 0.7 %成都: 0.7 %扬州: 1.8 %扬州: 1.8 %拉贾斯坦邦: 0.2 %拉贾斯坦邦: 0.2 %新乡: 0.2 %新乡: 0.2 %无锡: 0.5 %无锡: 0.5 %昆明: 0.4 %昆明: 0.4 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 2.0 %杭州: 2.0 %武汉: 0.4 %武汉: 0.4 %济源: 0.2 %济源: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 0.4 %温州: 0.4 %湖州: 0.2 %湖州: 0.2 %漯河: 5.2 %漯河: 5.2 %潍坊: 0.2 %潍坊: 0.2 %石家庄: 0.7 %石家庄: 0.7 %福州: 0.7 %福州: 0.7 %秦皇岛: 0.2 %秦皇岛: 0.2 %美国: 0.2 %美国: 0.2 %芒廷维尤: 15.9 %芒廷维尤: 15.9 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %衢州: 0.5 %衢州: 0.5 %西宁: 20.3 %西宁: 20.3 %西安: 0.2 %西安: 0.2 %贵阳: 0.9 %贵阳: 0.9 %运城: 1.2 %运城: 1.2 %连云港: 0.4 %连云港: 0.4 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.2 %郑州: 1.2 %重庆: 0.4 %重庆: 0.4 %锡林郭勒盟: 0.4 %锡林郭勒盟: 0.4 %镇江: 0.4 %镇江: 0.4 %长春: 0.4 %长春: 0.4 %长沙: 1.2 %长沙: 1.2 %长治: 0.4 %长治: 0.4 %阳泉: 1.2 %阳泉: 1.2 %青岛: 0.2 %青岛: 0.2 %其他其他CanadaChinaCzech RepublicNetherlandsSpain[]上海东莞临汾保定六安北京十堰南京南充南宁南昌合肥吉安呼伦贝尔呼和浩特嘉兴大同大连天津太原宁波安庆宣城常州常德广州廊坊张家口徐州惠州成都扬州拉贾斯坦邦新乡无锡昆明晋城朝阳杭州武汉济源深圳温州湖州漯河潍坊石家庄福州秦皇岛美国芒廷维尤芝加哥苏州衢州西宁西安贵阳运城连云港遵义邯郸郑州重庆锡林郭勒盟镇江长春长沙长治阳泉青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (630) PDF downloads(23) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return