Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LAN Bing-bing, JIN Ruo-fei, LIU Yan-song, LIU Guang-fei, ZHOU Ji-ti. EFFECT OF SODIUM PERIODATE-APAM CONJUNCTION ON DEWATERABILITY OF WASTE ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 122-126. doi: 10.13205/j.hjgc.202007019
Citation: LAN Bing-bing, JIN Ruo-fei, LIU Yan-song, LIU Guang-fei, ZHOU Ji-ti. EFFECT OF SODIUM PERIODATE-APAM CONJUNCTION ON DEWATERABILITY OF WASTE ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 122-126. doi: 10.13205/j.hjgc.202007019

EFFECT OF SODIUM PERIODATE-APAM CONJUNCTION ON DEWATERABILITY OF WASTE ACTIVATED SLUDGE

doi: 10.13205/j.hjgc.202007019
  • Received Date: 2020-05-15
  • The dewaterability of waste activated sludge was improved by sodium periodate and anionic polyacrylamide (APAM) conjunction. Sludge dewaterability was determined by specific resistance to filtration and the sludge moisture content, and the contents of protein and polysaccharide in extracellular polymers substances (EPS), as well as zeta potential and particle size of the sludge were also determined. The result indicated that 88 mg/g DS (dry sludge) sodium periodate and 2 mg/g DS APAM could effectively improve sludge dewaterability under pH of 8, and specific resistance to filtration and the sludge moisture content decreased to 4.82×1012 m/kg and 69.67%, respectively. After the oxidation of sodium periodate, the zeta potential of sludge increased, protein content of soluble extracellular polymeric substances increased. Fluorescence spectroscopy showed that humic acid in soluble extracellular polymeric substances was oxidized, and the particle size of sludge decreased. The combined conditioner can effectively improve sludge dewaterability and facilitate the subsequent sludge treatment and disposal.
  • 甄广印, 吴太朴, 陆雪琴, 等. 高级氧化污泥深度脱水技术研究进展[J]. 环境污染与防治, 2019, 41(9):1108-1119.
    李亚林, 刘蕾, 张景玉, 等. 电渗透耦合Fe2+-过硫酸钠污泥脱水过程中EPS的变化特性[J]. 环境工程学报, 2019, 13(2):185-194.
    DEVLIN D C, ESTEVES S R R, DINSDALE R M, et al. The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge[J]. Bioresource Technology, 2011, 102(5):4076-4082.
    徐振佳, 陆宇倩, 李莲, 等. 不同反应条件对污泥水热碳化脱水性能的影响[J]. 环境工程, 2019, 37(3):1-12.
    连广浒,程刚,张霖钰,等.水力空化-酸化调理增强污泥脱水性能的研究[J/OL].环境工程:1-10[2020-07-29

    ].http://kns.cnki.net/kcms/detail/11.2097.X.20191219.1352.004.html.
    徐文迪, 常沙, 傅金祥. 基于过氧化钙(CaO2)的类芬顿污泥预处理技术研究[J]. 环境工程, 2018, 36(7):117-127.
    刘怡君. 芬顿反应强化污泥脱水试验及机理研究[J]. 环境工程, 2017, 35(4):55-59.
    NEYENS E, BAEYENS J, DEWIL R, et al. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J]. Journal of Hazardous Materials, 2004, 106(2/3):83-92.
    BOKARE A D, CHOI W. Singlet-Oxygen Generation in Alkaline Periodate Solution[J]. Environmental Science & Technology, 2015, 49(24):14392-14400.
    SUDALAI A, KHENKIN A, NEUMANN R. Sodium periodate mediated oxidative transformations in organic synthesis[J]. Organic & Biomolecular Chemistry, 2015, 13(15):4374-4394.
    章广德, 孙明宇. 应用聚丙烯酰胺对市政污泥脱水性能影响的研究[J]. 环境科学与管理, 2017, 42(11):108-111.
    WALTER W G. Standard methods for the examination of water and wastewater[M].Washington:American Public Health Association. 1989.
    XIAO K K, CHEN Y, JIANG X, et al. Variations in physical, chemical and biological properties in relation to sludge dewaterability under Fe(Ⅱ)-Oxone conditioning[J]. Water Research, 2017, 109:13-23.
    FRØLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8):1749-1758.
    DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3):350-356.
    陈丹丹, 窦昱昊, 卢平, 等. 污泥深度脱水技术研究进展[J]. 化工进展, 2019, 38(10):4722-4746.
    LIN F, ZHU X L, LI J G, et al. Effect of extracellular polymeric substances(EPS)conditioned by combined lysozyme and cationic polyacrylamide on the dewatering performance of activated sludge[J]. Chemosphere, 2019, 235:679-689.
    李会东, 李璟, 张哲歆, 等. 过氧化钙联合絮凝剂调理污泥改善脱水性能[J]. 环境工程学报, 2019, 13(11):2736-2742.
    万甜, 闫幸辛, 任杰辉, 等. Fe(Ⅱ)活化过硫酸盐改善污泥脱水性能[J]. 环境工程学报, 2020, 14(1):189-196.
    CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24):5701-5710.
    SHENG G P, YU H Q. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy[J]. Water Research, 2006, 40(6):1233-1239.
    UYGUNER C S, BEKBOLET M. Evaluation of humic acid photocatalytic degradation by UV-vis and fluorescence spectroscopy[J]. Catalysis Today, 2005, 101(3/4):267-274.
  • Relative Articles

    [1]LI Denghui, HUANG Bangjie, ZHANG Zongyao, LIU Xiaochen, DU Hongwei, SUN Hongwei, FANG Huaiyang, FANG Xiaohang. A CASE STUDY ON URBAN NON-POINT SOURCE POLLUTION CONTROL: THE HUIZHOU CHATING ECOLOGICAL REGULATION POND IN THE SHAHE RIVER BASIN OF THE DONGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 35-42. doi: 10.13205/j.hjgc.202406005
    [2]CHEN Yan, ZHAI Jun, YANG Min, ZHU Hanshou, JIN Diandian, GAO Haifeng, HOU Peng. ANALYSIS OF ECOLOGICAL PROTECTION SITUATION AND ITS VARIATION CHARACTERISTICS OF THE CHISHUI RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 185-194. doi: 10.13205/j.hjgc.202304026
    [3]PANG Bo, YANG Wenxin, CUI Baoshan, ZHANG Shuyan, XIE Tian, NING Zhonghua, GAO Fang, ZHANG Hongshan. EVALUATION OF THE EFFECT OF VEGETATION RESTORATION IN THE YELLOW RIVER DELTA WETLAND BIODIVERSITY CONSERVATION PROJECT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 213-221. doi: 10.13205/j.hjgc.202301026
    [4]GENG Zhi, DU Jizeng, LIU Hongxi, CAO Bo, LI Xinyu, ZHANG Yong, CUI Baoshan. EVALUATION OF ECOLOGICAL WATER REPLENISHMENT AMOUNT AND PATH FOR URBAN SMALL AND MICRO WETLANDS BASED ON HYDRODYNAMIC PROCESS: A CASE STUDY OF BEIJING HANSHIQIAO WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 51-60. doi: 10.13205/j.hjgc.202301007
    [5]WANG Chao, WANG Yuan, DOU Peng, WANG Zhenmei, MENG Qingyi, YANG Moyuan, TAO Haijun. SIMULATION OF WATER BLOOM CONTROL EFFECT OF LANDSCAPE SLOW-MOVING WATER BODIES BY VELOCITY UNDER ECOLOGICAL WATER REPLENISHMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 195-203. doi: 10.13205/j.hjgc.202301024
    [6]XU Cundong, REN Zihao, HUANG Song, ZHAO Zhihong, ZI Yahui, HU Xiaomeng. OPTIMIZATION OF MIKE21 RIVER NETWORK DRAINAGE SCHEME BASED ON DYNAMIC PLANNING THEORY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 79-86. doi: 10.13205/j.hjgc.202301010
    [7]LI Zhiyun, DENG Xiaoya, LONG Aihua, CHEN Fulong, ZHANG Lili, GAO Haifeng. EVALUATION OF SOIL,WATER RESOURCES AND ECOLOGICAL CARRYING STATUS OF THE TARIM RIVER BASIN FROM THE PERSPECTIVE OF THREE-DIMENSIONAL ECOLOGICAL FOOTPRINT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 286-294. doi: 10.13205/j.hjgc.202206036
    [8]XIA Rui, JIA Ruining, CHEN Yan, WANG Lu, MA Shuqin, ZHANG Yuan. PROSPECTS OF SIMULATION METHODS FOR WATERSHED AQUATIC ECOSYSTEM INTEGRITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 241-252. doi: 10.13205/j.hjgc.202206031
    [9]PAN Ying, HAN Rui, ZHANG Yin, ZHANG Jin, YI Qitao, LI Ruonan. SCENARIO STUDY OF HYDROLOGICAL PROCESS IN COAL MINING SUBSIDENCE AREA BASED ON SWAT-FLUS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 272-279. doi: 10.13205/j.hjgc.202206034
    [10]XU Xiaomei, WANG Taishan, LIANG Ying, ZHANG Junlong, FENG Juan. UNCERTAINTY ESTIMATION FOR TRADING RATE SYSTEM FOR EFFLUENT TRADING IN DAGU RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 177-183. doi: 10.13205/j.hjgc.202202027
    [11]XU Hao, SUN Xiao-ling. THE INTERACTIVE MODELING AND JOINT PREVENTION OF WATER POLLUTION BETWEEN SURFACE WATER AND GROUNDWATER IN MAOZHOU RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 21-26. doi: 10.13205/j.hjgc.202106004
    [12]LIU Jing-jing, XIE Wei-ke, ZHANG Bo, LI Chao, LI Yong-jian, DING Zhuo, CUI Hai-hang, WANG Yi. THROUGH-FLOW CHARACTERISTICS OF GRAVEL FILTER BED OF AN ACTUAL RIVER COURSE BASED ON NUMERICAL SIMULATION OF MIKE 21: A CASE STUDY OF ECOLOGICAL RESTORATION PROJECT IN A RIVER COURSE IN HANZHONG CITY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 47-50,147. doi: 10.13205/j.hjgc.202101006
    [13]LIU Qian, WANG Wei, LUO Bin, WANG Kang. CONTRIBUTION OF POLLUTION REDUCTION MEASURES AND METEOROLOGICAL CONDITIONS TO IMPROVEMENT OF WATER ENVIRONMENT OF THE MINJIANG RIVER BASIN IN THE MIDDLE OF THE 13TH FIVE-YEAR PLAN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 45-54. doi: 10.13205/j.hjgc.202105007
    [14]GAO Shang, HU Peng, CUI Song, ZHANG Zu-lin, XING Zhen-xiang, ZHANG Fu-xiang. NUMERICA SIMULATION AND UNCERTAINTY ANALYSIS OF SURFACE RUNOFF IN NAOLI RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 83-89. doi: 10.13205/j.hjgc.202010013
    [15]LI Bing, QIU Yong, TIAN Yu-xin, ZHU Yin, WANG Yan, ZHENG Kai-kai, LI Ji. PERFORMANCE EVALUATION AND SCENARIO SIMULATION FOR PROCESS RETROFITTING OF WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 93-99. doi: 10.13205/j.hjgc.202007015
  • Cited by

    Periodical cited type(3)

    1. 金桂琴,黄俊雄,王军红,宋倩,李文忠,郭浩然. 基于水盐平衡的官厅水库氟化物达标途径研究. 环境工程. 2025(02): 148-156 . 本站查看
    2. 丁磊,陈黎明,王逸飞,缴健. 感潮河段城市湿地水动力模拟及改善方案研究. 水利水运工程学报. 2024(01): 35-45 .
    3. 吴悦,徐佳琪,仇文顺,王梦瑶,李述,时洋,魏加华. 潮白河北京段生态补水调度方案研究. 水利水电技术(中英文). 2023(09): 180-189 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.3 %FULLTEXT: 13.3 %META: 84.2 %META: 84.2 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.0 %其他: 16.0 %其他: 0.2 %其他: 0.2 %China: 0.2 %China: 0.2 %United States: 0.2 %United States: 0.2 %[]: 0.2 %[]: 0.2 %上海: 2.3 %上海: 2.3 %东莞: 3.1 %东莞: 3.1 %临汾: 0.2 %临汾: 0.2 %亳州: 1.2 %亳州: 1.2 %保定: 0.4 %保定: 0.4 %信阳: 0.6 %信阳: 0.6 %兰州: 0.2 %兰州: 0.2 %北京: 4.7 %北京: 4.7 %十堰: 0.2 %十堰: 0.2 %南京: 1.8 %南京: 1.8 %南充: 0.2 %南充: 0.2 %南通: 0.2 %南通: 0.2 %厦门: 0.6 %厦门: 0.6 %台州: 0.2 %台州: 0.2 %合肥: 0.4 %合肥: 0.4 %呼和浩特: 0.2 %呼和浩特: 0.2 %唐山: 0.2 %唐山: 0.2 %嘉兴: 0.6 %嘉兴: 0.6 %大同: 1.6 %大同: 1.6 %大连: 3.3 %大连: 3.3 %太原: 0.8 %太原: 0.8 %宁波: 0.2 %宁波: 0.2 %宜昌: 0.2 %宜昌: 0.2 %宣城: 0.2 %宣城: 0.2 %宿迁: 0.2 %宿迁: 0.2 %常德: 0.2 %常德: 0.2 %广州: 0.8 %广州: 0.8 %延安: 0.2 %延安: 0.2 %张家口: 2.0 %张家口: 2.0 %成都: 0.8 %成都: 0.8 %扬州: 0.6 %扬州: 0.6 %昆明: 1.6 %昆明: 1.6 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.6 %朝阳: 0.6 %杭州: 2.3 %杭州: 2.3 %武汉: 0.6 %武汉: 0.6 %沈阳: 0.8 %沈阳: 0.8 %济南: 0.2 %济南: 0.2 %济宁: 0.6 %济宁: 0.6 %济源: 0.2 %济源: 0.2 %淄博: 0.2 %淄博: 0.2 %深圳: 0.8 %深圳: 0.8 %湖州: 0.2 %湖州: 0.2 %湛江: 0.2 %湛江: 0.2 %漯河: 0.8 %漯河: 0.8 %珠海: 0.2 %珠海: 0.2 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 14.8 %芒廷维尤: 14.8 %芝加哥: 5.9 %芝加哥: 5.9 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %西宁: 12.9 %西宁: 12.9 %西安: 0.6 %西安: 0.6 %西雅图: 0.6 %西雅图: 0.6 %贵阳: 0.8 %贵阳: 0.8 %运城: 1.6 %运城: 1.6 %通辽: 0.2 %通辽: 0.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %鄂州: 0.6 %鄂州: 0.6 %重庆: 0.4 %重庆: 0.4 %铁岭: 0.2 %铁岭: 0.2 %银川: 0.6 %银川: 0.6 %长春: 0.6 %长春: 0.6 %长沙: 0.8 %长沙: 0.8 %青岛: 0.6 %青岛: 0.6 %黄石: 0.6 %黄石: 0.6 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他其他ChinaUnited States[]上海东莞临汾亳州保定信阳兰州北京十堰南京南充南通厦门台州合肥呼和浩特唐山嘉兴大同大连太原宁波宜昌宣城宿迁常德广州延安张家口成都扬州昆明晋城朝阳杭州武汉沈阳济南济宁济源淄博深圳湖州湛江漯河珠海石家庄福州秦皇岛芒廷维尤芝加哥衡阳衢州西宁西安西雅图贵阳运城通辽遵义邯郸郑州鄂州重庆铁岭银川长春长沙青岛黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (242) PDF downloads(11) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return