Citation: | KE Yi-hong, ZENG Yi-fang, LI Hua-fan, CHEN Jie-jie, WU Chun-shan, LIU Chang-qing, ZHENG Yu-yi. EFFECTS OF PRETREATED METHODS ON VOLATILE FATTY ACIDS PRODUCTION THROUGH SLUDGE ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 21-26,12. doi: 10.13205/j.hjgc.202008004 |
WANG D B, DUAN Y Y, YANG Q, et al. Free ammonia enhances dark fermentative hydrogen production from waste activated sludge[J]. Water Research, 2018, 133:272-281.
|
YANG G J, WANG D B, YANG Q, et al. Effect of acetate to glycerol ratio on enhanced biological phosphorus removal[J]. Chemosphere, 2018, 196:78-86.
|
WANG L, LIU W Z, KANG L L, et al. Enhanced biohydrogen production from waste activated sludge in combined strategy of chemical pretreatment and microbial electrolysis[J]. International Journal of Hydrogen Energy, 2014, 39(23):11913-11919.
|
KUMAR G, PONNUSAMY V K, BHOSALE R R, et al. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production[J]. Bioresource Technology, 2019, 287:121427.
|
ATASOY M, OWUSU-AGYEMAN I, PLAZA E, et al. Bio-based volatile fatty acid production and recovery from waste streams:Current status and future challenges[J]. Bioresource Technology, 2018, 268:773-786.
|
LUO K, PANG Y, YANG Q, et al. A critical review of volatile fatty acids produced from waste activated sludge:enhanced strategies and its applications[J]. Environmental Science and Pollution Research, 2019, 26(14):13984-13998.
|
BOUGRIER C, DELGENÈS J P, CARRÈRE H. Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge[J]. Biochemical Engineering Journal, 2007, 34(1):20-27.
|
XUE Y G, LIU H J, CHEN S S, et al. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge[J]. Chemical Engineering Journal, 2015, 264:174-180.
|
LIAO X C, LI H, ZHANG Y Y, et al. Accelerated high-solids anaerobic digestion of sewage sludge using low-temperature thermal pretreatment[J]. International Biodeterioration & Biodegradation, 2016, 106:141-149.
|
ZHANG D D, JIANG H L, CHANG J, et al. Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production[J]. Bioresource Technology, 2019, 279:92-100.
|
JASON D, DANIEL S, STEPHAN T, et al. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability[J]. Water Research, 2008, 42(18):4699-4709.
|
YUAN H Y, CHEN Y G, ZHANG H X, et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions[J]. Environmontal Science and Technology, 2006, 40(6):2025-2029.
|
MA H J, CHEN X C, LIU H, et al. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation:alkaline or neutral pH?[J]. Waste Management, 2016, 48:397-403.
|
ZHAO J W, WANG D B, LIU Y W, et al. Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation[J]. Bioresource Technology, 2018, 249:431-438.
|
ATASOY M, EYICE O, SCHNURER A, et al. Volatile fatty acids production via mixed culture fermentation:Revealing the link between pH, inoculum type and bacterial composition[J]. Bioresource Technology, 2019, 292:121889.
|
HUANG X F, MU T S, SHEN C M, et al. Effects of bio-surfactants combined with alkaline conditions on volatile fatty acid production and microbial community in the anaerobic fermentation of waste activated sludge[J]. International Biodeterioration & Biodegradation, 2016, 114:24-30.
|
YUAN Y, LIU Y, LI B K, et al. Short-chain fatty acids production and microbial community in sludge alkaline fermentation:long-term effect of temperature[J]. Bioresource Technology, 2016, 211:685-690.
|
CHEN Y G, LIU K, SU Y L, et al. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH[J]. Bioresource Technology, 2013, 140:97-102.
|
ZHANG P, CHEN Y G, ZHOU Q. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions:effect of pH[J]. Water Research, 2009, 43(15):3735-3742.
|
YUAN Y, WANG S Y, LIU Y, et al. Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems[J]. Bioresource Technology, 2015, 197:56-63.
|
WU L, ZHANG C, HU H, et al. Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation:effect of acid or alkali pretreatment[J]. Bioresource Technology, 2017, 240:192-196.
|
HUANG X, DONG W X, WANG H J, et al. Role of acid/alkali-treatment in primary sludge anaerobic fermentation:insights into microbial community structure, functional shifts and metabolic output by high-throughput sequencing[J]. Bioresource Technology, 2018, 249:943-952.
|
WU H Y, GAO J Y, YANG D H, et al. Alkaline fermentation of primary sludge for short-chain fatty acids accumulation and mechanism[J]. Chemical Engineering Journal, 2010, 160(1):1-7.
|
DEVLIN D C, ESTEVES S R, DINSDALE R M, et al. The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge[J]. Bioresource Technology, 2011, 102(5):4076-4082.
|
李华藩,郑艳,叶枢华,等.污泥餐厨垃圾不同混配比厌氧发酵产氢产甲烷[J].福建师范大学学报(自然科学版),2020,36(4):50-56.
|
MASUKO T, MINAMI A, IWASAKI N, et al. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format[J]. Analytical Biochemistry, 2005, 339(1):69-72.
|
HARTREE E F. Determination of protein a modification of the Lowry method that gives a linear photometric response[J]. Analytical Biochemistry, 1972, 48(2):422-427.
|
ZHEN G Y, LU X Q, KATO H, et al. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion:current advances, full-scale application and future perspectives[J]. Renewable & Sustainable Energy Reviews, 2017, 69:559-577.
|
RAJAN R V, LIN J G, RAY B T. Low level chemical pretreatment for enhanced sludge solubilization[J]. Journal of Environmental Sciences China, 1989, 61(11/12):1678-1683.
|
BOUGRIER C, DELGENES J P, CARRERE H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion[J]. Chemical Engineering Journal, 2008, 139(2):236-244.
|
MIRMASOUMI S, SARAY R K, EBRAHIMI S. Evaluation of thermal pretreatment and digestion temperature rise in a biogas fueled combined cooling, heat, and power system using exergo-economic analysis[J]. Energy Conversion and Management, 2018, 163:219-238.
|
WANG X, LI Y, LIU J X, et al. Augmentation of protein-derived acetic acid production by heat-alkaline-induced changes in protein structure and conformation[J]. Water Research, 2016, 88:595-603.
|
吴至成,吴琳等. pH对生物表面活性剂脂肽强化剩余污泥厌氧水解酸化的影响[J]. 环境工程学报, 2016, 10(7):3834.
|
GAO X, ZHANG Q, ZHU H. High rejection rate of polysaccharides by microfiltration benefits Christensenella minuta and acetic acid production in an anaerobic membrane bioreactor for sludge fermentation[J]. Bioresource Technology, 2019, 282:197-201.
|
CASTRILLON L, VAZQUEZ I, MARANON E, et al. Anaerobic thermophilic treatment of cattle manure in UASB reactors[J]. Waste Manag Res, 2002, 20(4):350-356.
|
HUANG X, SHEN C, LIU J, et al. Improved volatile fatty acid production during waste activated sludge anaerobic fermentation by different bio-surfactants[J]. Chemical Engineering Journal, 2015, 264:280-290.
|
刘常青,陈细妹,林志龙,等. 碱预处理污泥厌氧发酵产氢研究[J]. 中国给水排水, 2017, 33(23):94-97.
|
YANG D, DAI X, SONG L, et al. Effects of stepwise thermal hydrolysis and solid-liquid separation on three different sludge organic matter solubilization and biodegradability[J]. Bioresource Technology, 2019, 290:121753.
|
WANG D, HUANG Y, XU Q, et al. Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge[J]. Bioresource Technology, 2019, 275:163-171.
|