Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SONG Meng-zhu, KAEWMEE Pat-charanat, JO Giun, TAKAHASHI Fumita-ke. SYNTHESIS AND PROPERTIES OF POLYMER MODIFIED FLY ASH BASED POROUS COMPOSITES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 27-33,95. doi: 10.13205/j.hjgc.202008005
Citation: SONG Meng-zhu, KAEWMEE Pat-charanat, JO Giun, TAKAHASHI Fumita-ke. SYNTHESIS AND PROPERTIES OF POLYMER MODIFIED FLY ASH BASED POROUS COMPOSITES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 27-33,95. doi: 10.13205/j.hjgc.202008005

SYNTHESIS AND PROPERTIES OF POLYMER MODIFIED FLY ASH BASED POROUS COMPOSITES

doi: 10.13205/j.hjgc.202008005
  • Received Date: 2020-06-28
  • In this research, polyvinyl alcohol/cellulose composite porous materials with high content of fly ash were prepared. The preparation process of the composite was simple, without requirement of high-temperature or high-pressure conditions. The characterization of the fly ash composites was analyzed via XRF, XRD, FT-IR, SEM, and mercury porosimetry. The effects of the mixture ratio of raw materials and drying temperature on the properties of the samples were explored. It was found that PVA could effectively increase the unconfined compressive strength of the composites, and cellulose was useful to improve the porous structure of the composites. The pore structure of the composites mainly came from the bubble polymerization in the process of water evaporation. The drying temperature was an essential factor that had influence on the pore structure, when the samples were prepared under the condition without external pressure. When the content of fly ash was 80%, polyvinyl alcohol was 10 wt% and cellulose was 10 wt%, the composite had good properties in porosity, pore structure, compressive strength, water absorption and water retention capacity. The comprehensive performance of the fly ash-based materials could be further developed by improving the internal porous structure and activation of the chemical functional groups. Further research needs to be conducted, to make the hydrophilic fly ash composites with certain compressive strength and provide good alternative for the utilization of fly ash.
  • AHMARUZZAMAN M. A review on the utilization of fly ash[J]. Progress in Energy and Combustion Science, 2010,36(3):327-363.
    SENAPATI M R. Fly ash from thermal power plants-waste management:an overview[J]. Curr Sci India, 2011,100(12):1791-1794.
    MA S H, et al. Challenges and Developments in the Utilization of Fly Ash in China[J]. International Journal of Environmental Science and Development, 2017,8(11):781-785.
    TANG Z H, MA S H, DING J. Current status and prospect of fly ash utilization in China[C]//2013 World of Coal Ash (WOCA) Conference, 037, Lexington, KY, April, 2013:22-25.
    IZQUIERDO M, et al. Leaching behaviors of elements from coal combustion of fly ash:an overview[J]. Int J Coal Geol, 2012,94:54-66.
    BILSKI J J, ALVA A K. Transport of heavy metals and cations in a fly ash amended soil[J]. Bull Environ Contam Toxicol, 1995,55:502-509.
    AHMARUZZAMAN M. Role of Fly Ash in the Removal of Organic Pollutants from Wastewater[J]. Energy & Fuels, 2009,23(3):1494-1511.
    JAYARANJAN M L D, el al. Reuse options for coal fired power plant bottom ash and fly ash[J]. Rev Environ Sci Biotechnol, 2014,13:467-486.
    BASU M, et al. Potential fly-ash utilization in agriculture:a global review[J]. Prog Nat Sci, 2009,19(10):1173-1186.
    BLISSETT R A, ROWSON N A. A review of the multi-component utilization of coal fly ash[J]. Fuel, 2012,97:1-23.
    BHATTACHARYA M, et al. Polymer Nanocomposites:A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers[J]. Materials, 2016,9(4):262.
    VEERAN K G, GURU B V. Water Soluble Polymers for Pharmaceutical Applications[J]. Polymers, 201,,3:1972-2009.
    ALEHYEN S, et al. Porosity and fire resistance of fly ash based geopolymer[J]. JMES, 2017,8(10):3676-3689.
    ASHISH K, et al. A brief review of fly ash as reinforcement for composites with improved mechanical and tribological properties[J]. JOM, 2020:2340-2351
    AJMEERA R, RAMU K, et al. Influence of fly ash nano filler on the tensile and flexural properties of novel hybrid epoxy nanocomposites[J]. Materials Today:Proceedings, 2020,DOI: 10.1016/j.matpr.2020.02.150.
    SAHAI R, PAWAR N. Studies on mechanical properties of fly ash filled PPO composite with coupling agent[J]. International Journal of Chemical, Environmental & Biological Sciences, 2014,2(4):187-192.
    SINGLA M,CHAWLA V. Mechanical properties of epoxy resin-fly ash composite[J]. Journal of Minerals & Materials Characterization & Engineering, 2010,9(3):199-210.
    ACHARYA S K, MISHRA S C. Weathering behavior of fly-ash jute polymer composite[J]. Journal of Reinforced Plastics and Composites, 2007,26(12):1201-1210.
    KUMAR B, et al. Utilization of fly ash as filler in HDPE/fly ash polymer composites:a review[J]. International Journal of Applied Engineering Research, 2012,7:1679-1682.
    SUKANYA Satapathy, NANDO B G. HDPE-fly ash/nano fly ash composites[J]. J Appl Polym, 2013,130(6):4558-4567.
    SHERIFF S, et al. Analysis and fabrication of polymer reinforced fly-ash composites engine[C]//First International Conference on Recent Advances in Aerospace Engineering (ICRAAE), Coimbatore,2017:1-6.
    TAKAHASHI Katsunori, YABUTA Kazuya. Road Temperature Mitigation Effect of "Road Cool," a Water-Retentive Material Using Blast Furnace Slag[R]. JFE Technical Report, No 13,2009.
  • Relative Articles

    [1]FU Jiahui, GUO Jie, LIU Airong, ZHOU Tao, ZHAO Youcai. DEVELOPMENT AND BARRIER PERFORMANCE OF A POLYVINYLPYRROLIDONE/ HYDROXYPROPYL METHYLCELLULOSE/NANOCELLULOSE TERNARY ODOR GAS BARRIER SPRAY FILM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 116-125. doi: 10.13205/j.hjgc.202412015
    [2]HE Miao, ZHANG Zhenyu, CHEN Liudong, TANG Jiayi, CHEN Yijing, YANG Zhendong. EXPLORING TREASURE IN FLY ASH: THE STATUS QUO AND SUSTAINABLE DEVELOPMENT PATH OF RARE EARTH ELEMENT RECOVERY TECHNOLOGY IN FLY ASH[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 121-131. doi: 10.13205/j.hjgc.202410015
    [3]LIU Wei, YI Yuanrong, LI Chunhui, LI Jie, DINA Jaabay. MECHANISM OF SOLIDIFICATION OF HEAVY METALS (Zn, Cd) BY LADLE FURNACE SLAG-FLY ASH BASED GEOPOLYMERS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 127-135. doi: 10.13205/j.hjgc.202406015
    [4]LUO Pengxiang, DENG Niandong, XIE Geng, XING Congcong, LI Yuxin. HYDRATION MECHANISM AND KINETIC CHARACTERISTICS OF CaCl2 EXCITING FLY ASH PASTE FILLING MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 62-70. doi: 10.13205/j.hjgc.202306009
    [5]QIU Qin. RESEARCH ON PREPARATION AND PERFORMANCE OF OPEN-CELL FOAM GLASS FOR SPONGE CITY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 76-81. doi: 10.13205/j.hjgc.202312009
    [6]ZHAO Manman, XU Xiuyue, WANG Ningning, CHEN Hao, ZHAO Ruirui, CHEN Guanglong, CHEN Fan. EFFECT OF DOSING STRAW AND FLY ASH ON ENRICHMENT OF HEAVY METALS IN RYEGRASS IN COAL GANGUE CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 221-226,287. doi: 10.13205/j.hjgc.202312027
    [7]LÜ Zhiwen, LI Yuqing, YANG Jingjing, CAO Xiaoqiang, ZHANG Jian, LIU Huaqing, WANG Gang. PREPARATION OF SOLID WASTE-BASED POROUS MATERIALS BY PHYSICAL FOAMING TO CAPTURE AND STORE CO2[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 38-46. doi: 10.13205/j.hjgc.202306006
    [8]XIE Chenghao, GAO Lihua, ZHAN Wenlong, XIAO Dechao, HE Zhijun, ZHANG Junhong. EXPERIMENTAL STUDY ON SIMULTANEOUS DENITRATION AND DESULFURIZATION BY FLY ASH AND CARBIDE SLAG SUPPORTED Na2O UNDER MICROWAVE FIELD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 81-87. doi: 10.13205/j.hjgc.202202013
    [9]GAO Hang, GUO Xing-xing, WANG Si-yu, DAI Yun-rong, YIN Li-feng. PHOTO-THERMAL DESALINATION PERFORMANCE OF GRAPHITE OXIDE/POLYVINYL ALCOHOL COMPOSITE ELECTROSPUN FIBROUS MEMBRANE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 6-14. doi: 10.13205/j.hjgc.202106002
    [10]QIU Jun-jie, ZHENG Liu-gen, CHEN Xiao-yang, CHEN Yong-chun. EFFECTS OF FLY ASH INCORPORATION ON HYDRAULIC CHARACTERISTICS AND AIR PERMEABILITY OF COAL GANGUE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 131-137,186. doi: 10.13205/j.hjgc.202109019
    [11]WANG Xiao-fang, GAO Jian-ming, GUO Yan-xia, CHENG Fang-qin. DIFFERENCE OF IRON REMOVAL EFFICIENCIES FROM CIRCULATING FLUIDIZED BED FLY ASH AND PULVERIZED COAL FLY ASH BY MAGNETIC SEPARATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 148-153. doi: 10.13205/j.hjgc.202003025
    [12]ZONG Yan-bing, LI Fei, LIU Zhao-bo, CANG Da-qiang. IMPROVEMENT OF ALUMINA EXTRACTION FROM FLY ASH BY ACID-ALKALI METHOD WITH LUMP ROASTING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 208-213,258. doi: 10.13205/j.hjgc.202006034
    [13]LIAO Quan, LUO Hua-yong, RONG Hong-wei, CHEN Bing-wei, LIANG Ying. ADSORPTION PERFORMANCE OF TETRACYCLINE ONTO NANO-ALUMINA MODIFIED GEL BEADS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 36-42. doi: 10.13205/j.hjgc.202009006
    [14]TANG Xu-long, XING Xiu-jun. EXPERIMENTAL STUDY ON PREPARATION OF SLAG FIBER FROM BLAST FURNACE SLAG AND FLY ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 180-186. doi: 10.13205/j.hjgc.202011030
  • Cited by

    Periodical cited type(4)

    1. 梁杨,杨兵,王连盛,郭晶,姜广明,陈宝雨. 基于Design-Expert的碱激发粉煤灰建筑外墙腻子配合比优化试验研究. 工程质量. 2024(01): 17-22 .
    2. 陈永亮,王玲,石磊,李慧敏,王学东. 污泥-稻壳生物炭对水中亚甲基蓝的吸附. 印染助剂. 2023(04): 33-41 .
    3. 秦娟,杨尚文,鲍雨晴,吴妤婕,蔡琳,文倩. 钙铝黄长石陶粒改性及处理含锰废水效能. 环境工程. 2022(08): 47-54 . 本站查看
    4. 梁杨,杨兵,王连盛,郭晶,张伟杰,陈宝雨. 低活性粉煤灰替代建筑外墙腻子中非活性填料的可行性研究. 中国涂料. 2022(12): 39-42+48 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.2 %FULLTEXT: 24.2 %META: 74.4 %META: 74.4 %PDF: 1.4 %PDF: 1.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.0 %其他: 10.0 %China: 0.6 %China: 0.6 %[]: 0.9 %[]: 0.9 %上海: 0.9 %上海: 0.9 %东京: 0.3 %东京: 0.3 %东莞: 2.6 %东莞: 2.6 %临汾: 0.6 %临汾: 0.6 %佛山: 0.3 %佛山: 0.3 %保定: 0.6 %保定: 0.6 %北京: 4.3 %北京: 4.3 %十堰: 0.3 %十堰: 0.3 %南京: 4.0 %南京: 4.0 %南通: 0.3 %南通: 0.3 %台州: 1.1 %台州: 1.1 %合肥: 0.3 %合肥: 0.3 %嘉兴: 0.6 %嘉兴: 0.6 %多伦多: 1.7 %多伦多: 1.7 %宿迁: 0.3 %宿迁: 0.3 %密蘇里城: 0.9 %密蘇里城: 0.9 %常州: 1.7 %常州: 1.7 %常德: 0.3 %常德: 0.3 %延安: 0.6 %延安: 0.6 %张家口: 0.9 %张家口: 0.9 %惠州: 0.6 %惠州: 0.6 %成都: 0.3 %成都: 0.3 %扬州: 0.3 %扬州: 0.3 %拉贾斯坦邦: 0.3 %拉贾斯坦邦: 0.3 %晋城: 0.9 %晋城: 0.9 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.7 %杭州: 1.7 %武汉: 0.3 %武汉: 0.3 %济源: 0.3 %济源: 0.3 %温州: 0.6 %温州: 0.6 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.3 %湘潭: 0.3 %漯河: 0.9 %漯河: 0.9 %珀斯: 6.3 %珀斯: 6.3 %石家庄: 0.9 %石家庄: 0.9 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 35.6 %芒廷维尤: 35.6 %芝加哥: 1.4 %芝加哥: 1.4 %苏州: 0.9 %苏州: 0.9 %衡阳: 1.1 %衡阳: 1.1 %衢州: 0.9 %衢州: 0.9 %西宁: 4.3 %西宁: 4.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 2.3 %运城: 2.3 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.9 %郑州: 0.9 %都柏林: 0.3 %都柏林: 0.3 %鄂尔多斯: 0.3 %鄂尔多斯: 0.3 %重庆: 2.0 %重庆: 2.0 %长沙: 0.6 %长沙: 0.6 %长治: 0.3 %长治: 0.3 %雅安: 0.6 %雅安: 0.6 %其他China[]上海东京东莞临汾佛山保定北京十堰南京南通台州合肥嘉兴多伦多宿迁密蘇里城常州常德延安张家口惠州成都扬州拉贾斯坦邦晋城朝阳杭州武汉济源温州湖州湘潭漯河珀斯石家庄绵阳芒廷维尤芝加哥苏州衡阳衢州西宁贵阳运城遵义邯郸郑州都柏林鄂尔多斯重庆长沙长治雅安

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (260) PDF downloads(5) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return