Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YI Hongxue, LI Jie, WANG Yae, ZHAO Wei, XIE Huina, ZHANG Wenli, QUAN Hairong, MU Hao, HU Kaiyao. EFFECTS OF ACHROMOBACTER DENITRIFICANS STRAIN 2-5 WITH IRON OXIDATION AND AEROBIC DENITRIFICATION FUNCTION ON BIOLOGICAL NITROGEN REMOVAL PERFORMANCE AND COMMUNITY STRUCTURE IN A SEQUENCING BATCH REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 211-216. doi: 10.13205/j.hjgc.202212028
Citation: SONG Meng-zhu, KAEWMEE Pat-charanat, JO Giun, TAKAHASHI Fumita-ke. SYNTHESIS AND PROPERTIES OF POLYMER MODIFIED FLY ASH BASED POROUS COMPOSITES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 27-33,95. doi: 10.13205/j.hjgc.202008005

SYNTHESIS AND PROPERTIES OF POLYMER MODIFIED FLY ASH BASED POROUS COMPOSITES

doi: 10.13205/j.hjgc.202008005
  • Received Date: 2020-06-28
  • In this research, polyvinyl alcohol/cellulose composite porous materials with high content of fly ash were prepared. The preparation process of the composite was simple, without requirement of high-temperature or high-pressure conditions. The characterization of the fly ash composites was analyzed via XRF, XRD, FT-IR, SEM, and mercury porosimetry. The effects of the mixture ratio of raw materials and drying temperature on the properties of the samples were explored. It was found that PVA could effectively increase the unconfined compressive strength of the composites, and cellulose was useful to improve the porous structure of the composites. The pore structure of the composites mainly came from the bubble polymerization in the process of water evaporation. The drying temperature was an essential factor that had influence on the pore structure, when the samples were prepared under the condition without external pressure. When the content of fly ash was 80%, polyvinyl alcohol was 10 wt% and cellulose was 10 wt%, the composite had good properties in porosity, pore structure, compressive strength, water absorption and water retention capacity. The comprehensive performance of the fly ash-based materials could be further developed by improving the internal porous structure and activation of the chemical functional groups. Further research needs to be conducted, to make the hydrophilic fly ash composites with certain compressive strength and provide good alternative for the utilization of fly ash.
  • AHMARUZZAMAN M. A review on the utilization of fly ash[J]. Progress in Energy and Combustion Science, 2010,36(3):327-363.
    SENAPATI M R. Fly ash from thermal power plants-waste management:an overview[J]. Curr Sci India, 2011,100(12):1791-1794.
    MA S H, et al. Challenges and Developments in the Utilization of Fly Ash in China[J]. International Journal of Environmental Science and Development, 2017,8(11):781-785.
    TANG Z H, MA S H, DING J. Current status and prospect of fly ash utilization in China[C]//2013 World of Coal Ash (WOCA) Conference, 037, Lexington, KY, April, 2013:22-25.
    IZQUIERDO M, et al. Leaching behaviors of elements from coal combustion of fly ash:an overview[J]. Int J Coal Geol, 2012,94:54-66.
    BILSKI J J, ALVA A K. Transport of heavy metals and cations in a fly ash amended soil[J]. Bull Environ Contam Toxicol, 1995,55:502-509.
    AHMARUZZAMAN M. Role of Fly Ash in the Removal of Organic Pollutants from Wastewater[J]. Energy & Fuels, 2009,23(3):1494-1511.
    JAYARANJAN M L D, el al. Reuse options for coal fired power plant bottom ash and fly ash[J]. Rev Environ Sci Biotechnol, 2014,13:467-486.
    BASU M, et al. Potential fly-ash utilization in agriculture:a global review[J]. Prog Nat Sci, 2009,19(10):1173-1186.
    BLISSETT R A, ROWSON N A. A review of the multi-component utilization of coal fly ash[J]. Fuel, 2012,97:1-23.
    BHATTACHARYA M, et al. Polymer Nanocomposites:A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers[J]. Materials, 2016,9(4):262.
    VEERAN K G, GURU B V. Water Soluble Polymers for Pharmaceutical Applications[J]. Polymers, 201,,3:1972-2009.
    ALEHYEN S, et al. Porosity and fire resistance of fly ash based geopolymer[J]. JMES, 2017,8(10):3676-3689.
    ASHISH K, et al. A brief review of fly ash as reinforcement for composites with improved mechanical and tribological properties[J]. JOM, 2020:2340-2351
    AJMEERA R, RAMU K, et al. Influence of fly ash nano filler on the tensile and flexural properties of novel hybrid epoxy nanocomposites[J]. Materials Today:Proceedings, 2020,DOI: 10.1016/j.matpr.2020.02.150.
    SAHAI R, PAWAR N. Studies on mechanical properties of fly ash filled PPO composite with coupling agent[J]. International Journal of Chemical, Environmental & Biological Sciences, 2014,2(4):187-192.
    SINGLA M,CHAWLA V. Mechanical properties of epoxy resin-fly ash composite[J]. Journal of Minerals & Materials Characterization & Engineering, 2010,9(3):199-210.
    ACHARYA S K, MISHRA S C. Weathering behavior of fly-ash jute polymer composite[J]. Journal of Reinforced Plastics and Composites, 2007,26(12):1201-1210.
    KUMAR B, et al. Utilization of fly ash as filler in HDPE/fly ash polymer composites:a review[J]. International Journal of Applied Engineering Research, 2012,7:1679-1682.
    SUKANYA Satapathy, NANDO B G. HDPE-fly ash/nano fly ash composites[J]. J Appl Polym, 2013,130(6):4558-4567.
    SHERIFF S, et al. Analysis and fabrication of polymer reinforced fly-ash composites engine[C]//First International Conference on Recent Advances in Aerospace Engineering (ICRAAE), Coimbatore,2017:1-6.
    TAKAHASHI Katsunori, YABUTA Kazuya. Road Temperature Mitigation Effect of "Road Cool," a Water-Retentive Material Using Blast Furnace Slag[R]. JFE Technical Report, No 13,2009.
  • Relative Articles

    [1]LIANG Lichen, YAN Xiaofei, WANG Lili, JIANG Hao, XU Yuanshun. SOIL HEAVY METAL POLLUTION CHARACTERISTICS AND HEALTH RISK ASSESSMENT OF A SIMPLE DOMESTIC GARBAGE LANDFILL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 177-187. doi: 10.13205/j.hjgc.202410021
    [2]ZHANG Yibing, LIANG Yiqun, ZHANG Yuan, FANG Yinxiang, NIU Hongya, FAN Jingsen. SOURCE APPORTIONMENT AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN PM2.5 IN THE FENGFENG MINING AREA IN 2017—2019[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 242-250. doi: 10.13205/j.hjgc.202308031
    [3]GAO Mengfei, ZHENG Shun'an, LIU Changhua, GAO Yunbing, GAO Ge, ZHAO Ya'nan. RISK ASSESSMENT OF HEAVY METAL POLLUTION IN FARMLAND SOIL BASED ON MULTI-FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 233-241. doi: 10.13205/j.hjgc.202308030
    [4]LI Ganyu, CUI Xingtao. CHARACTERISTICS OF HEAVY METAL ELEMENTS POLLUTION AND HEALTH RISK ASSESSMENT OF ATMOSPHERIC DUST-FALL IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 278-287. doi: 10.13205/j.hjgc.202312035
    [5]GUO Yake, GAO Yanyan, QIAN Hui, TANG Shunqi, WANG Haike, SHI Xiaoxin. SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN THE CHU RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 112-119. doi: 10.13205/j.hjgc.202301014
    [6]LI Mei, WEN Bing, YING Rongrong, ZHANG Shengtian, LONG Tao, XIA Bing, WANG Lei, CAO Shaohua, WU Xiaofen. DISCUSSION ON KEY TECHNICAL PARAMETERS AND PROCESS METHODS OF GROUNDWATER ENVIRONMENTAL INVESTIGATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 227-235. doi: 10.13205/j.hjgc.202312028
    [7]YOU Yangyang, LIANG Zengqiang, HUO Ning. GROUNDWATER EVALUATION OF INFORMAL LANDFILLS BASED ON WATER QUALITY IDENTIFICATION INDEX METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 264-269,311. doi: 10.13205/j.hjgc.202312033
    [8]DU Xiaoli, CHI Zhongwen, YIN Zijie, ZHAO Meng. ATTENUATION ON CONTROL EFFECT OF HEAVY METALS IN RUNOFF BY PERMEABLE BRICK DURING THE WHOLE PROCESS OF BLOCKAGE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 1-8. doi: DOI:10.13205/j.hjgc.202207001
    [9]LU Yifan, LU Yin, CAI Hui, SUN Shoujun, SHI Weilin. POLLUTION ANALYSIS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN FIELD LEFT BY A LEAD-ACID BATTERY FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 135-140,189. doi: 10.13205/j.hjgc.202201020
    [10]ZHANG Yuchen, CHEN Xiaoduo, GUI Si, SU Hua, ZHANG Weifang, LIU Changqing, WU Chunshan, ZHENG Yuyi. MINERAL COMPONENTS AND HEAVY METAL POLLUTION CHARACTERISTICS IN WASTE INCINERATION FLY ASH IN FUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 102-109. doi: 10.13205/j.hjgc.202208014
    [11]TU Degang, FENG Tao, YANG Guodong, LUO Weiwei, NIE Beili. POLLUTION ANALYSIS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN AN ABANDONED MACHINERY PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 217-223. doi: 10.13205/j.hjgc.202204031
    [12]LIANG Yu, YAN Haihong, YIN Qin, NIAN Yuegang, ZHANG Xianqi, WANG Xingzhi. RESEARCH ON GROUNDWATER POLLUTION SITUATION IN CHIFENG LANDFILL AND CAUSE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 188-195,223. doi: 10.13205/j.hjgc.202204027
    [13]NI Haifeng, DAN Zeng, ZHOU Wenwu, ZHOU Peng, XU Fei, YANG Tao, MENG Dean, CHEN Guanyi. CHARACTERISTICS ANALYSIS AND RISK ASSESSMENT OF HEAVY METALS OF WASTE INCINERATION FLY ASH IN LHASA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 89-93,131. doi: 10.13205/j.hjgc.202203014
    [14]ZHENG Ying-yi, LIU Jie, JIANG Ping-ping, YOU Shao-hong, ZHOU Shu-lin, YU Guo. POLLUTION ASSESSMENT OF HEAVY METALS IN FARMLAND SOILS AROUND AN ABANDONED SMELTER IN HECHI, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 238-245. doi: 10.13205/j.hjgc.202105033
    [15]DOU Wei-qiang, AN Yi, QIN Li, LIN Da-song, DONG Ming-ming. CHARACTERISTICS OF VERTICAL DISTRIBUTION AND MIGRATION OF HEAVY METALS IN FARMLAND SOILS AND ECOLOGICAL RISK ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 166-172. doi: 10.13205/j.hjgc.202102027
    [16]MA Tao, SONG Jiang-min, LIU Qun-qun, SHENG Yan-qing. COMPARISON OF ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN DREDGED SEDIMENT TREATED BY DIFFERENT METHODS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 141-146,152. doi: 10.13205/j.hjgc.202102023
    [17]LIU Zhao, ZHOU Hong, LIU Wei, CAO Wen-jia, LAN Sheng-tao. HEAVY METAL CONCENTRATION PROPERTIES ANALYSIS AND PRIMARY HEALTH RISK ASSESSMENT IN GROUNDWATER IN THE QINGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 196-203. doi: 10.13205/j.hjgc.202105028
    [18]LIU Chun-yue, WANG Hui, BAI Ming-yue, ZHAO Yue-ming, WU Hao, WANG Xiao-xu, ZHAO Si-cong. RISK ASSESSMENT AND CHARACTERISTICS OF HEAVY METALS IN SURFACE SOIL OF OLD TOWN OF SHENYANG[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 167-171. doi: 10.13205/j.hjgc.202001027
    [19]ZHANG Fu-xiang, CUI Song, ZHU Qian-de, GAO Shang, LI Kun-yang. POLLUTION CHARACTERISTIC AND RISK ASSESSMENT OF HEAVY METALS IN AQUATIC ENVIRONMENT OF QIXING RIVER WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 68-75. doi: 10.13205/j.hjgc.202010011
  • Cited by

    Periodical cited type(3)

    1. 谷立坤,张建云,徐浩,侯志康,邵霜霜,张曼,仲少攀,白志辉. 郑州市景观植物石楠叶际细菌群落结构及反硝化功能. 中国环境科学. 2024(09): 5160-5168 .
    2. 韩奕彤,罗育池,王刚,刘畅,宋宝德,秘昭旭,王先稳. 典型离子型稀土矿区氮污染地下水原位微生物修复技术研究. 环境科学研究. 2024(11): 2391-2400 .
    3. 杨春玉,董战峰,顾湘,汪俊峰. 中国公众空气质量感知的时空演化及其驱动因素分析. 环境科学研究. 2024(12): 2653-2664 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.2 %FULLTEXT: 7.2 %META: 86.9 %META: 86.9 %PDF: 5.9 %PDF: 5.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.9 %其他: 7.9 %China: 1.5 %China: 1.5 %Seattle: 0.3 %Seattle: 0.3 %United States: 0.3 %United States: 0.3 %[]: 0.3 %[]: 0.3 %三亚: 0.3 %三亚: 0.3 %上海: 9.2 %上海: 9.2 %东京: 0.3 %东京: 0.3 %东莞: 2.1 %东莞: 2.1 %中山: 0.8 %中山: 0.8 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %保定: 0.8 %保定: 0.8 %兰州: 0.5 %兰州: 0.5 %北京: 4.6 %北京: 4.6 %十堰: 1.0 %十堰: 1.0 %南京: 1.0 %南京: 1.0 %南昌: 0.5 %南昌: 0.5 %南通: 0.3 %南通: 0.3 %南阳: 0.3 %南阳: 0.3 %台州: 1.3 %台州: 1.3 %嘉兴: 0.5 %嘉兴: 0.5 %四平: 0.3 %四平: 0.3 %天津: 4.6 %天津: 4.6 %太原: 0.3 %太原: 0.3 %威海: 0.8 %威海: 0.8 %娄底: 0.3 %娄底: 0.3 %宁德: 0.3 %宁德: 0.3 %宜昌: 0.8 %宜昌: 0.8 %宣城: 0.3 %宣城: 0.3 %常州: 1.0 %常州: 1.0 %常德: 0.3 %常德: 0.3 %广州: 2.6 %广州: 2.6 %张家口: 0.5 %张家口: 0.5 %徐州: 0.3 %徐州: 0.3 %德阳: 0.3 %德阳: 0.3 %成都: 1.3 %成都: 1.3 %扬州: 1.8 %扬州: 1.8 %昆明: 0.8 %昆明: 0.8 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.3 %朝阳: 0.3 %杭州: 2.6 %杭州: 2.6 %武汉: 2.1 %武汉: 2.1 %沈阳: 0.3 %沈阳: 0.3 %沧州: 1.0 %沧州: 1.0 %济源: 0.5 %济源: 0.5 %海口: 0.3 %海口: 0.3 %淄博: 0.5 %淄博: 0.5 %淮南: 0.3 %淮南: 0.3 %深圳: 0.5 %深圳: 0.5 %温州: 1.0 %温州: 1.0 %湖州: 1.8 %湖州: 1.8 %漯河: 3.1 %漯河: 3.1 %潍坊: 0.3 %潍坊: 0.3 %烟台: 0.5 %烟台: 0.5 %珠海: 0.3 %珠海: 0.3 %盐城: 0.3 %盐城: 0.3 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.3 %福州: 0.3 %聊城: 0.3 %聊城: 0.3 %芒廷维尤: 19.2 %芒廷维尤: 19.2 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.3 %苏州: 0.3 %西宁: 2.8 %西宁: 2.8 %西安: 0.3 %西安: 0.3 %贵阳: 0.8 %贵阳: 0.8 %运城: 2.6 %运城: 2.6 %遵义: 0.3 %遵义: 0.3 %邯郸: 1.3 %邯郸: 1.3 %郑州: 1.0 %郑州: 1.0 %重庆: 0.8 %重庆: 0.8 %锦州: 0.3 %锦州: 0.3 %长沙: 0.5 %长沙: 0.5 %长治: 0.3 %长治: 0.3 %阳泉: 0.3 %阳泉: 0.3 %青岛: 0.5 %青岛: 0.5 %黔东南: 0.3 %黔东南: 0.3 %其他ChinaSeattleUnited States[]三亚上海东京东莞中山临汾乌鲁木齐保定兰州北京十堰南京南昌南通南阳台州嘉兴四平天津太原威海娄底宁德宜昌宣城常州常德广州张家口徐州德阳成都扬州昆明晋城朝阳杭州武汉沈阳沧州济源海口淄博淮南深圳温州湖州漯河潍坊烟台珠海盐城石家庄福州聊城芒廷维尤芝加哥苏州西宁西安贵阳运城遵义邯郸郑州重庆锦州长沙长治阳泉青岛黔东南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (261) PDF downloads(5) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return