Citation: | LIAN Guang-hu, CHENG Gang, ZHANG Lin-yu, ZHANG Yu, SONG Zhi-jun, XU Xiao-jie, WEN Yu-ting, CAI Mei-qiang. SLUDGE DEWATERING PERFORMANCE ENHANCEMENT BY HYDRODYNAMIC CAVITATION-ACIDIFICATION CONDITIONING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 96-100,70. doi: 10.13205/j.hjgc.202008016 |
严伟嘉, 孙永军, 冯丽颖, 等. 污泥调理技术研究进展[J]. 土木建筑与环境工程, 2015, 37(增刊1):41-45.
|
刘云兴, 罗海斌. 中国城市污水厂污泥处理技术的现状及发展研究[J]. 环境科学与管理, 2013, 38(7):94-97.
|
郭亚萍, 胡云楚, 吴晓芙. 复合絮凝剂对生活污泥脱水的研究.工业用水与废水[J]. 2003, 34(3):73-75.
|
殷绚, 阙子龙, 吕效平, 等. 超声波声强及处理时间对污泥结合水的影响[J]. 化工进展, 2005, 24(3):307-312.
|
MARCIN S, TOMASZ K, LIDIA W.Determination of permanent, electromagnetic field influence on sewage sludges conditioning[J]. Environmental Protection Engineering, 2002, 28(1):49-53.
|
BIEN J B, STRZELCZYK M, WOLSKP P. Magneti c and chemical conditioning of sewage sludge[J]. Environment Protection Engineering, 2004, 30(4):183-187.
|
LORIMER J P, MASON T J. Sonochemistry. Part 1:the physical aspects[J]. Chemical Society Reviews, 1987, 16(16):239-274.
|
ADEWUYI Y G. Sonochemistry:environmental science and engineering applications[J]. Industrial & Engineering Chemistry Research, 2001, 40(22):4681-4715.
|
VOL N. Harness cavitation to improve processing[J]. Chemical Engineering Progress, 1996, 92(7):57-69.
|
NEYENS E, BAEYENS J, WEEMAES M, et al. Hot acid hydrolysis as apotential treatment of thickened sewage sludge[J]. Journal of Hazardous Materials, 2003, 98(1/2/3):275-293.
|
DEVLIN D C, ESTEVES S R R. The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge[J]. Bioresource Technology, 2011, 102(5):4076-4082.
|
GAVALDA D, SCHEINER J D. Agronomic and environmental impacts of a single application of heat-dried sludge on an Alfisol[J]. Science of the Total Environment, 2005, 343(1/2/3):97-109.
|
CAI M Q, HU J Q, GEORGE W, et al. Understanding mechanisms of synergy between acidification and ultrasound treatments for activated sludge dewatering:from bench to pilot-scale investigation[J]. Environmental Science and Technology, 2018, 52(10):4313-4323.
|
WALTER W G. Standard methods for the examination of water and wastewater[M]. Washington:American Public Health Association, 1989.
|
LIU H, YANG J K, ZHU N R, et al. A comprehensive insight into the combined effects of Fenton's reagent and skeleton builders on sludge deep dewatering performance[J]. Journal of Hazardous Materials, 2013, 258/259:144-150.
|
王文平, 郭祀远, 李琳, 等. 考马斯亮蓝法测定野木瓜多糖中蛋白质的含量[J]. 食品研究与开发, 2008, 29(1):115-117.
|
DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. The American Historical Review, 1947, 28(3):350-356.
|
李现瑾, 苑春莉. 厌氧处理结合超声空化高效破解剩余污泥[J]. 东北大学学报, 2015, 36(6):868-872.
|
BIAN B, ZHANG L M, ZHANG Q, et al. Coupled heating/acidification pretreatment of chemical sludge for dewatering by using waste sulfuric acid at low temperature[J]. Chemosphere, 2018, 205:260-266.
|
SCHOLZ M. Review of recent trends in capillary suction time (CST) dewaterability testing research[J]. Industrial and Engineering Chemistry Research, 2005, 44(22):8157-8163.
|
SAWALHA O, SCHOLZ M. Modeling the relationship between capillary suction time and specific resistance to filtration[J]. Journal of Environmental Engineering, 2010, 136(9):983-991.
|
YANG S F, LI X Y. Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions[J]. Process Biochemistry, 2009, 44(1):91-96.
|
JIANG L B, YUAN X Z, LI H, et al. Response to comment on "co-pelletization of sewage sludge and biomass:the rmogravimetric analysis and ash deposits"[J]. Fuel Processing Technology, 2016, 153:174.
|
SHI Y, HUANG J, ZENG G, et al. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments:an overview[J]. Chemosphere, 2017, 180:396-411.
|
MANCUSO G, LANGONE M, ANDREOTTOLA G. A swirling jet-induced cavitation to increase activated sludge solubilisation and aerobic sludge biodegradability[J]. Ultrasonics Sonochemistry, 2017, 35:489-501.
|
ZHEN G Y, LU X Q, ZHAO Y C, et al. Enhanced dewaterability of sewage sludge in the presence of Fe(Ⅱ)-activated persulfate oxidation[J]. Bioresource Technology, 2012, 116(4):259-265.
|
肖本益, 刘俊新. 不同预处理方法对剩余污泥性质的影响研究[J]. 环境科学, 2008, 29(2):327-331.
|
JIN B, WILEN B M, LANT P. Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge[J]. Chemical Engineering Journal, 2004, 98(12):115-126.
|
何文远. 酸处理改善活性污泥脱水性能的研究[D]. 上海:同济大学, 2004.
|
NING X A, CHEN H, WU J, et al. Effects of ultrasound assisted Fenton treatment on textile dyeing sludge structure and dewaterability[J]. Chemical Engineering Journal, 2014, 242:102-108.
|
[1] | LIANG Lichen, YAN Xiaofei, WANG Lili, JIANG Hao, XU Yuanshun. SOIL HEAVY METAL POLLUTION CHARACTERISTICS AND HEALTH RISK ASSESSMENT OF A SIMPLE DOMESTIC GARBAGE LANDFILL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 177-187. doi: 10.13205/j.hjgc.202410021 |
[2] | ZHANG Yibing, LIANG Yiqun, ZHANG Yuan, FANG Yinxiang, NIU Hongya, FAN Jingsen. SOURCE APPORTIONMENT AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN PM2.5 IN THE FENGFENG MINING AREA IN 2017—2019[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 242-250. doi: 10.13205/j.hjgc.202308031 |
[3] | GAO Mengfei, ZHENG Shun'an, LIU Changhua, GAO Yunbing, GAO Ge, ZHAO Ya'nan. RISK ASSESSMENT OF HEAVY METAL POLLUTION IN FARMLAND SOIL BASED ON MULTI-FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 233-241. doi: 10.13205/j.hjgc.202308030 |
[4] | LI Ganyu, CUI Xingtao. CHARACTERISTICS OF HEAVY METAL ELEMENTS POLLUTION AND HEALTH RISK ASSESSMENT OF ATMOSPHERIC DUST-FALL IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 278-287. doi: 10.13205/j.hjgc.202312035 |
[5] | GUO Yake, GAO Yanyan, QIAN Hui, TANG Shunqi, WANG Haike, SHI Xiaoxin. SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN THE CHU RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 112-119. doi: 10.13205/j.hjgc.202301014 |
[6] | LI Mei, WEN Bing, YING Rongrong, ZHANG Shengtian, LONG Tao, XIA Bing, WANG Lei, CAO Shaohua, WU Xiaofen. DISCUSSION ON KEY TECHNICAL PARAMETERS AND PROCESS METHODS OF GROUNDWATER ENVIRONMENTAL INVESTIGATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 227-235. doi: 10.13205/j.hjgc.202312028 |
[7] | YOU Yangyang, LIANG Zengqiang, HUO Ning. GROUNDWATER EVALUATION OF INFORMAL LANDFILLS BASED ON WATER QUALITY IDENTIFICATION INDEX METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 264-269,311. doi: 10.13205/j.hjgc.202312033 |
[8] | DU Xiaoli, CHI Zhongwen, YIN Zijie, ZHAO Meng. ATTENUATION ON CONTROL EFFECT OF HEAVY METALS IN RUNOFF BY PERMEABLE BRICK DURING THE WHOLE PROCESS OF BLOCKAGE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 1-8. doi: DOI:10.13205/j.hjgc.202207001 |
[9] | LU Yifan, LU Yin, CAI Hui, SUN Shoujun, SHI Weilin. POLLUTION ANALYSIS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN FIELD LEFT BY A LEAD-ACID BATTERY FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 135-140,189. doi: 10.13205/j.hjgc.202201020 |
[10] | ZHANG Yuchen, CHEN Xiaoduo, GUI Si, SU Hua, ZHANG Weifang, LIU Changqing, WU Chunshan, ZHENG Yuyi. MINERAL COMPONENTS AND HEAVY METAL POLLUTION CHARACTERISTICS IN WASTE INCINERATION FLY ASH IN FUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 102-109. doi: 10.13205/j.hjgc.202208014 |
[11] | TU Degang, FENG Tao, YANG Guodong, LUO Weiwei, NIE Beili. POLLUTION ANALYSIS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN AN ABANDONED MACHINERY PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 217-223. doi: 10.13205/j.hjgc.202204031 |
[12] | LIANG Yu, YAN Haihong, YIN Qin, NIAN Yuegang, ZHANG Xianqi, WANG Xingzhi. RESEARCH ON GROUNDWATER POLLUTION SITUATION IN CHIFENG LANDFILL AND CAUSE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 188-195,223. doi: 10.13205/j.hjgc.202204027 |
[13] | NI Haifeng, DAN Zeng, ZHOU Wenwu, ZHOU Peng, XU Fei, YANG Tao, MENG Dean, CHEN Guanyi. CHARACTERISTICS ANALYSIS AND RISK ASSESSMENT OF HEAVY METALS OF WASTE INCINERATION FLY ASH IN LHASA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 89-93,131. doi: 10.13205/j.hjgc.202203014 |
[14] | ZHENG Ying-yi, LIU Jie, JIANG Ping-ping, YOU Shao-hong, ZHOU Shu-lin, YU Guo. POLLUTION ASSESSMENT OF HEAVY METALS IN FARMLAND SOILS AROUND AN ABANDONED SMELTER IN HECHI, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 238-245. doi: 10.13205/j.hjgc.202105033 |
[15] | DOU Wei-qiang, AN Yi, QIN Li, LIN Da-song, DONG Ming-ming. CHARACTERISTICS OF VERTICAL DISTRIBUTION AND MIGRATION OF HEAVY METALS IN FARMLAND SOILS AND ECOLOGICAL RISK ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 166-172. doi: 10.13205/j.hjgc.202102027 |
[16] | MA Tao, SONG Jiang-min, LIU Qun-qun, SHENG Yan-qing. COMPARISON OF ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN DREDGED SEDIMENT TREATED BY DIFFERENT METHODS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 141-146,152. doi: 10.13205/j.hjgc.202102023 |
[17] | LIU Zhao, ZHOU Hong, LIU Wei, CAO Wen-jia, LAN Sheng-tao. HEAVY METAL CONCENTRATION PROPERTIES ANALYSIS AND PRIMARY HEALTH RISK ASSESSMENT IN GROUNDWATER IN THE QINGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 196-203. doi: 10.13205/j.hjgc.202105028 |
[18] | LIU Chun-yue, WANG Hui, BAI Ming-yue, ZHAO Yue-ming, WU Hao, WANG Xiao-xu, ZHAO Si-cong. RISK ASSESSMENT AND CHARACTERISTICS OF HEAVY METALS IN SURFACE SOIL OF OLD TOWN OF SHENYANG[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 167-171. doi: 10.13205/j.hjgc.202001027 |
[19] | ZHANG Fu-xiang, CUI Song, ZHU Qian-de, GAO Shang, LI Kun-yang. POLLUTION CHARACTERISTIC AND RISK ASSESSMENT OF HEAVY METALS IN AQUATIC ENVIRONMENT OF QIXING RIVER WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 68-75. doi: 10.13205/j.hjgc.202010011 |