Citation: | WU Long, WU Hua-feng, WU Yue-dong, JIA Shao-hua, WANG Hui-gang. DISCUSSION ON DEVELOPMENT OF HEAT RECOVERY TECHNOLOGY FOR HIGH TEMPERATURE MOLTEN SLAG[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 190-193,88. doi: 10.13205/j.hjgc.202009030 |
赵芸芬.全球粗钢生产消费回顾及展望[N].世界金属导报,2019-05-07(A07).
|
《中国统计年鉴》编辑委员会.中国统计年鉴[M].2018.
|
吴博伟.铁合金的行业现状及发展趋势[J].冶金与材料,2019,39(1):166-167.
|
齐渊洪,干磊, 王海风,等.高炉熔渣余热回收技术发展过程及趋势[J].钢铁,2012,47(4):1-8.
|
蔡九菊,王建军,陈春霞,等.钢铁企业余热资源的回收与利用[J].钢铁,2007,42(6):1-7.
|
KUN-MOLEE,PIL-JUPARK.Estimation of the environmental credit for the recycling of granulated blast furnace slag based on LCA[J].Resources,Conservation and Recycling,2005,44(2):139-151.
|
JOJI A,SEIGO T,FUMIO I,et al.Development of a BOF slag blast granulating and heat recovering system[J].Technical Review:Mitsubishi Heavy Industries,1981,18(2):133-142.
|
JOJI A,HIROSHI O,TAKAFUMI N,et al.Development of slag blast granulating plant characterized by innovation of the slag treatment method,heat recovery[J].Technical Review:Mitsubishi Heavy Industries,1985,22(2):136-148.
|
侯利.液态钢渣改性气淬系统分析[J].信息系统工程,2015(10):43.
|
卢宏伟,李俊国,张玉柱.气淬渣滴冷却过程数值模拟研究[J].钢铁钒钛,2012,33(3):28-33.
|
YOSHINAGA M, FUJII K, SHIGEMATSU T,et al.Dry granulation and solidification of molten blast furnace slag[J].Transactions ISIJ,1982,22(11):823-829.
|
SCHOTT H K.Method and a device for processing hot liquid slags[P].US Patent,US5255900,1993.
|
严定鎏, 郭培民,齐渊洪.高炉渣干法粒化技术的分析[J].钢铁研究学报,2008,20(6):11-13.
|
王东.高温液态炉渣机械离心粒化机理及关键技术研究[D].青岛:青岛理工大学,2018:32-46.
|
KENNY W F.Energy conservation in process industries[M].Orlando:Academic Press.1984:13-19.
|
NILLS T.Heat Recovery from Molten Slag,a New Swedish Granulation Technique[M]//New Energy Conservation Technologies and Their Commercialization.Berlin:Springer Cerlag.1981.
|
路俊萍.熔渣干法粒化集成热能回收工艺的工业试验[N].世界金属导报,2015-11-24(B10).
|
HARRIS J C,WARNER N A.Dry Granulation and heat recovery from partly solidified slag droplets[J].Steel Times,1986,214(11):626-633.
|
BISIO G.Energy recovery from molten slag and exploitation of recovered energy[J].Energy,1997,22(5):501-509.
|
TANI Y.New Energy Conservation Technologies[M].Berlin Springer,1981.
|
KASAI E,KITAJIMA T,AKIYAMA T,et al. Rate of methane-steam reforming reaction on the surface of molten BF slag for heat recovery from molten slag by using a chemical reaction[J].ISIJ International,1997,37(10):1031-1036.
|
SHIMADA T,KOCHURA V,AKIYAMA T,et al.Effects of slag compositions on the rate of methane steam reaction[J].ISIJ International,2001,41(2):111-115.
|
MIZUOCHI T,AKIYAMA T,SHIMADA T.Feasibility of rotary cup atomizer for slag granulation[J].ISIJ International,2001,41(12):1423-1428.
|
刘宏雄.利用高炉熔渣作热载体进行煤气化的探讨[J].节能,2004(6):41-43.
|
陶寿松,谢其湘,张新华.高炉冲渣余热利用分析和展望[J].冶金动力,2018(9):51-54.
|
熊超,史君杰,翁雪鹤.我国钢铁工业余热余能发电现状分析[J].中国钢铁业,2017(9):14-17.
|
郝以党,吴龙.钢渣辊压破碎余热有压热闷处理及发电新技术[A].2017高效、低成本、智能化炼钢共性技术研讨会[C].山东潍坊:河北金属学会,2017:367-372.
|
胡小媛,蒋伟中.日本岩矿棉、玻璃棉生产应用技术及市场考察报告[R].北京:中国绝热隔音材料协会,2006:31-33.
|
杨铧.高炉熔渣显热的高效利用:新一步法矿棉技术获得成功[J].节能与环保,2003(2):34-35.
|
唐续龙,张梅,郭敏,等.矿物棉纤维的非等温析晶动力学研究[J].北京科技大学学报,2011,33(12):1523-1528.
|
龙跃,杜培培,张良进,等.各因素对离心高炉渣纤维性能及成纤效果的影响[J].钢铁研究学报,2017,29(7):530-535.
|
毕艳国,孙韶华,刘旭权.高炉热熔渣制取矿棉的工艺研究与实践[C]//固废热熔渣岩矿棉生产技术交流会暨全国保温材料科技信息协会2017年年会. 银川:全国保温材料科技信息协会,2017:43-48.
|
吴伟.高炉热态熔渣直接生产矿棉工艺技术的探讨[J].宝钢技术,2016,29(4):49-52.
|
白智韬,邱桂博,彭犇,等.高碳铬铁渣基微晶玻璃体系调控分析[J].环境工程,2019,37(1):158-163.
|
赵贵州,李宇,代文彬,等.钢渣基高碱度微晶玻璃的一步法制备及工艺参数研究[J].工程科学学报,2016,38(2):207-212.
|