Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 38 Issue 9
Nov.  2020
Turn off MathJax
Article Contents
LU Hong-sheng, GAO Yu-ting, ZHANG Xue, SUN Pei-ming, QIU Meng-meng. REMOVAL OF LEAD(Pb2+)FROM SOIL WITH MICROBIAL FUEL CELLS TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 236-240,184. doi: 10.13205/j.hjgc.202009038
Citation: LU Hong-sheng, GAO Yu-ting, ZHANG Xue, SUN Pei-ming, QIU Meng-meng. REMOVAL OF LEAD(Pb2+)FROM SOIL WITH MICROBIAL FUEL CELLS TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 236-240,184. doi: 10.13205/j.hjgc.202009038

REMOVAL OF LEAD(Pb2+)FROM SOIL WITH MICROBIAL FUEL CELLS TECHNOLOGY

doi: 10.13205/j.hjgc.202009038
  • Received Date: 2019-07-22
  • In order to investigate the removal capability of heavy metals from soil by microbial fuel cells, we measure the electrical performance of a double-chamber microbial fuel cell (MFCs), and salt bridge was used as the proton channel in MFCs. The concentration of lead(Pb2+) was determined by flame atomic absorption spectrophotometry. The enrichment of Pb on electrode plate was observed by scanning electron microscope and analyzed by energy dispersive spectroscopy. The systematic taxonomic position of the bacteria isolated from the anolyte was analyzed by isolation, purification, 16S rDNA sequencing, and the establishment of the system tree. The results showed that after 10 days of MFCs operation, the removal of lead (Pb2+) from soil was as high as 64.40%, and the maximum voltage was 69.63 mV. The systematic taxonomic position analysis of the bacteria isolated from the anolyte showed that the two bacteria had the highest homology of 100% with Stenotrophomonas maltophilia strain LH15 (KM893074) and Pseudomonas sp. putida strain (MF996382) respectively. Based on the above results, the two strains were defined into Stentrophomonas and Pseudomonas by genus, and named SKD-GYT-1 (LC479453) and SKD-GYT-2 (LC479454) respectively, and their power generation capacity remained to be explored. Soil microbial fuel cells have a high capacity of generating electricity and obvious effect on the removal of lead from soil.
  • loading
  • PENG G Q, TIAN G M. Using electrode electrolytes to enhance electrokinetic removal of heavy metals from electroplating sludge[J]. Chemical Engineering Journal, 2010, 165(2):388-394.
    林芳芳, 丛鑫, 马福俊, 等. 处理温度和时间对六氯苯污染土壤热解吸修复的影响[J]. 环境科学研究, 2014, 27(10):1180-1185.
    LIAO X Y, LI Y, YAN X L. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process[J]. Journal of Environmental Sciences, 2016, 41:202-210.
    李欣芮, 成杰民. 原位钝化修复技术在重金属污染土壤中的可行性探究[J]. 绿色科技, 2017(20):87-89.
    GUSTAVE W, YUAN Z F, SEKAR R, et al. Arsenic mitigation in paddy soils by using microbial fuel cells[J]. Environmental Pollution, 2018, 238:647-655.
    CHEN Z, ZHU B K, JIA W F, et al. Can electrokinetic removal of metals from contaminated paddy soils be powered by microbial fuel cells?[J]. Environmental Technology & Innovation, 2015, 3:63-67.
    唐静文. 土壤微生物燃料电池产电性能及其修复Cd污染土壤效果的研究[D]. 上海:华东理工大学,2018.
    姜振. 植物-微生物电化学复合系统修复铬污染土壤和同步产电[D]. 哈尔滨:哈尔滨工业大学, 2016.
    HUANG L P, CHEN J W, QUAN X, et al. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell[J]. Bioprocess and Biosystems Engineering, 2010, 33(8):937-945.
    AFASHAM N, ROSHANDEL R, YAHJMAEI A S, et al. Bioelectricity generation in a soil microbial fuel cell with biocathode denitrification[J]. Energy Sources, 2015, 37(19):2092-2098.
    CHAO X, SONG H L, YU C Y, et al. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell[J]. Bioresource Technology, 2015, 189:87-93.
    HABIBUL N, HU Y, SHENG G P. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils[J]. Journal of Hazard Materials, 2016, 318:9-14.
    YUAN Y, ZHOU S, ZHUANG L. A new approach to in situ sediment remediation based on air-cathode microbial fuel cells[J]. Journal of Soils & Sediments, 2010, 10(7):1427-1433.
    LOVLEY D R, NEVIN K P. A shift in the current:new applications and concepts for microbe-electrode electron exchange[J]. Current Opinion in Biotechnology, 2011, 22(3):441-448.
    LOGAN B E, REGAN J M. Microbial fuel cells-challenges and applications[J]. Environment Science Technology, 2006, 40(17):5172-5180.
    黄敏, 汪家权, 朱承驻. 微生物燃料电池中盐桥连接的探讨[J]. 合肥工业大学学报(自然科学版), 2008, 31(10):1574-1576.
    朱贤妃. 两种简易盐桥的制备[J]. 实验教学与仪器, 2009, 2:66.
    景丽洁, 马甲. 火焰原子吸收分光光度法测定污染土壤中5种重金属[J]. 中国土壤与肥料, 2009(1):74-77.
    蒯梦霞. 微生物燃料电池对土壤重金属的去除效能研究[D]. 南京:东南大学, 2016.
    费讲驰. 高效产电菌的筛选及其在微生物燃料电池中的应用研究[D]. 吉首:吉首大学, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (185) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return