Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHOU Zhi-cai. EFFECT ASSESSMENT OF SPONGE CITY CONSTRUCTION IN THE INTERNATIONAL ECO-BUSINESS DISTRICT IN SONGJIANG DISTRICT IN SHANGHAI BASED ON SWMM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 167-173. doi: 10.13205/j.hjgc.202008028
Citation: ZHANG Yun-long, WANG Xuan, LIU Dan, LIAO Zhen-mei, LIU Qiang, LI Chun-hui, CAI Yan-peng. INFLUENCES OF GROUNDWATER DEPTH ON WATER TRANSPORT AND DISSIPATION IN SPAC SYSTEM OF PHRAGMITES AUSTRALIS IN A SEMI-ARID WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 7-13. doi: 10.13205/j.hjgc.202010002

INFLUENCES OF GROUNDWATER DEPTH ON WATER TRANSPORT AND DISSIPATION IN SPAC SYSTEM OF PHRAGMITES AUSTRALIS IN A SEMI-ARID WETLAND

doi: 10.13205/j.hjgc.202010002
  • Received Date: 2020-05-15
  • It was an important premise for sustainable management of regional water resources to accurately grasp the law of water transport and dissipation in the soil-plant-atmosphere continuum (SPAC). In this paper, the Baiyangdian wetland was taken as the research area. Combined with field measurement and model simulation method, influences of groundwater depth change on the water transport and dissipation in the SPAC system of Phragmites australis were discussed. The main conclusions of this study was as follows:1) Evapotranspiration of Phragmites australis (ETa) decreased with the increase of groundwater depth, and the threshold of groundwater depth for ETa to decrease was about 100 cm. With the decrease of groundwater depth, the soil profile balance during the whole growing season changed from water deficit to surplus. The groundwater burial depth threshold value that soil profile balance changed from water deficit to surplus was 60 cm, and the deficit amount was positively related to groundwater burial depth. 2) The effect levels of groundwater depth change on soil water storage and evapotranspiration in different months were different, and they reached peak in June. A large amount of ecological water replenishment should be avoided in spring and before the flood season, and the recommended water replenishment timings was autumn and winter. 3) With a comprehensive consideration of vegetation growth demand and water conservation, the optimal groundwater depth range of Phragmites australis communities was 110~150 cm in Baiyangdian wetland. Under the optimal scenario, the evapotranspiration of Phragmites australis communities in the growing season had 10%~20% water-saving potential.
  • 孙宁霞. 基于同位素示踪的农田水分转化规律研究[D]. 北京:中国地质大学(北京), 2015.
    刘大庆. 基于水循环模拟的沼泽湿地生态需水研究[D]. 大连:大连理工大学, 2008.
    WANG X, SU J Q, CAI Y P, et al. An integrated approach for early warning of water stress in shallow lakes:a case study in Lake Baiyangdian, North China[J]. Lake and Reservoir Management, 2013, 29(4):285-302.
    KARIMOV A K, SIMUNEK J, HANJRA M A, et al. Effects of the shallow water table on water use of winter wheat and ecosystem health:implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia)[J]. Agricultural Water Management, 2014, 131:57-69.
    XU X L, ZHANG Q, LI Y L, et al. Evaluating the influence of water table depth on transpiration of two vegetation communities in a lake floodplain wetland[J]. Hydrology Research, 2016, 47(S1):293-312.
    杨建锋, 李宝庆, 李运生, 等. 浅地下水埋深区潜水对SPAC系统作用初步研究[J]. 水利学报, 1999,30(7):27-32.
    李彦. 节水灌溉条件下河套灌区土壤水盐动态的SWAP模型分布式模拟预测[D]. 内蒙古:内蒙古农业大学, 2012.
    孙海龙, 吕志远, 郭克贞, 等. 浅埋条件下地下水对人工草地SPAC系统影响初探[J]. 内蒙古农业大学学报(自然科学版), 2008,29(2):148-153.
    宫兆宁, 宫辉力, 邓伟, 等. 浅埋条件下地下水-土壤-植物-大气连续体中水分运移研究综述[J]. 农业环境科学学报, 2006, 25(增刊1):365-373.
    BARRETO C E A G, WENDLAND E, MARCUZZO F F N. Estimating evapotranspiration based on groundwater level variation in a watershed[J]. Engenharia Agricola, 2009, 29(1):52-61.
    FAHLE M, DIETRICH O. Estimation of evapotranspiration using diurnal groundwater level fluctuations:comparison of different approaches with groundwater lysimeter data[J]. Water Resources Research, 2014, 50(1):273-286.
    GRIBOVSZKI Z, KALICZ P, SZILAGYI J, et al. Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations[J]. Journal of Hydrology, 2008, 349(1/2):6-17.
    TOVEY R. Alfalfa growth as influenced by static and fluctuating water tables[J]. Transactions of the Asae, 1964, 7(3):767-773.
    杨建锋, 刘士平, 张道宽, 等. 地下水浅埋条件下土壤水动态变化规律研究[J]. 灌溉排水, 2001, 20(3):25-28.
    张守军. 地下水埋深对玉米生长及地下水补给的影响[J]. 人民黄河, 2019, 41(12):142-145.
    赵丹丹, 王志春. 土壤水盐运移Hydrus模型及其应用[J]. 土壤与作物, 2018, 7(2):120-129.
    朱金峰, 周艺, 王世新, 等. 白洋淀湿地生态功能评价及分区[J]. 生态学报, 2020,40(2):459-472.
    van GENUCHTEN M T. A numerical model for water and solute movement in and below the root zone[R]. California, USA:United States Department of Agriculture Agricultural Research Service US Salinity Laboratory, 1987.
    SKAGGS T H, SHOUSE P J, POSS J A. Irrigating forage crops with saline waters:2. Modeling root uptake and drainage[J]. Vadose Zone Journal, 2006, 5(3):824-837.
    ZHU Y H, REN L L, SKAGGS T H, et al. Simulation of Populus euphratica root uptake of groundwater in an arid woodland of the Ejina Basin, China[J]. Hydrological Processes, 2009, 23(17):2460-2469.
    XIE T, LIU X H, SUN T. The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China[J]. Ecological Modelling, 2011, 222(2SI):241-252.
    戚志伟. 崇明东滩滨海围垦湿地芦苇光合和生长对土壤水盐因子的响应[D]. 上海:华东师范大学, 2017.
    刘玉, 王国祥, 潘国权. 地下水位对芦苇叶片生理特征的影响[J]. 生态与农村环境学报, 2008,24(4):53-56.
    范丽萍. 湿地水面及不同地下水位下芦苇蒸散量研究[D]. 西安:西安理工大学, 2007.
    衷平, 杨志峰, 崔保山, 等. 白洋淀湿地生态环境需水量研究[J]. 环境科学学报, 2005,25(8):1119-1126.
    河北省政府. 白洋淀生态环境治理和保护规划(2018-2035年)[R]. 2019.
  • Relative Articles

    [1]LIAO Xun, LI Yancheng, ZHANG Yuduo, YANG Qilin, LI Jiang. RESEARCH ON GROUNDWATER NITRATE REDUCTION EFFICIENCY BASED ON METHANOTROPH AND FUNCTIONAL MICROORGANISMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 113-120. doi: 10.13205/j.hjgc.202402013
    [2]KONG Huimin, ZHAO Xiaohui, XU Wan, DAI Yuhan, ZHANG Jiayu. OCCURRENCE AND RISK ASSESSMENT OF ANTIBIOTICS IN GROUNDWATER ENVIRONMENT IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 219-226. doi: 10.13205/j.hjgc.202302029
    [3]YOU Yangyang, LIANG Zengqiang, HUO Ning. GROUNDWATER EVALUATION OF INFORMAL LANDFILLS BASED ON WATER QUALITY IDENTIFICATION INDEX METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 264-269,311. doi: 10.13205/j.hjgc.202312033
    [4]NIU Yi, LI Wei, LI Gongke, WANG Weixing, LI Mingming, CAO Shuping, LÜ Xiaowen. SIMULATION OF RESTORATION OF GROUNDWATER POLLUTION IN A LANDFILL IN COASTAL PLAIN AREA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 12-20. doi: 10.13205/j.hjgc.202303002
    [5]LI Jingjie, CAI Wutian, LU Yonggao, BIAN Chao, YANG Li, WANG Mingguo. EFFECT EVALUATION OF Cr(Ⅵ) CONTAMINATED GROUNDWATER REMEDIATION BY PERMEABLE REACTIVE WALL IN PILOT SCALE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 162-167,176. doi: 10.13205/j.hjgc.202202025
    [6]SONG Binxue, HE Yueling, JIA Linchun, CENG Lin, CHEN Hong, XUE Gang. Fe0 SUPPORTED MIXOTROPHIC DENITRIFICATION FOR GROUNDWATER TREATMENTS: PERFORMANCE AND POTENTIAL MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 22-30,54. doi: 10.13205/j.hjgc.202208003
    [7]LIANG Yu, YAN Haihong, YIN Qin, NIAN Yuegang, ZHANG Xianqi, WANG Xingzhi. RESEARCH ON GROUNDWATER POLLUTION SITUATION IN CHIFENG LANDFILL AND CAUSE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 188-195,223. doi: 10.13205/j.hjgc.202204027
    [8]ZHANG Yun. ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 197-204,217. doi: 10.13205/j.hjgc.202205029
    [9]PAN Ying, HAN Rui, ZHANG Yin, ZHANG Jin, YI Qitao, LI Ruonan. SCENARIO STUDY OF HYDROLOGICAL PROCESS IN COAL MINING SUBSIDENCE AREA BASED ON SWAT-FLUS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 272-279. doi: 10.13205/j.hjgc.202206034
    [10]YIN Shu-zheng, XU Feng, WANG Wen-hui, HUO Wen-rong, HUANG Yun-xin. SIMULATION OF RUNOFF AND SPATIO-TEMPORAL VARIATIONS OF BLUE AND GREEN WATER RESOURCES IN SIHU BASIN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 133-140. doi: 10.13205/j.hjgc.202205019
    [11]YE Zhao-yong, YANG Yu, HOU Li-an. HOTSPOTS AND TRENDS OF GROUNDWATER RELATED RESEARCHES NEAR LANDFILLS:VISUAL ANALYSIS BASED ON CITESPACE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 65-71. doi: 10.13205/j.hjgc.202106011
    [12]XIANG Jia-jia. GROUNDWATER POLLUTION CONTROL BY CEMENT SOIL BARRIER WALL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 63-68,91. doi: 10.13205/j.hjgc.202109010
    [13]SUN Jun-liang, GONG Zhi-qiang, LI Lu, NIU Hao-bo, YIN Le-yi, CHEN Jian. OPTIMIZATION OF GROUNDWATER PUMPING SCHEME FOR A CHLORINATED HYDROCARBON-CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 172-178. doi: 10.13205/j.hjgc.202111023
    [14]XIAO Yong, MO Pei, YIN Shi-yang, LIU Hong-lu, ZHANG Yun-hui. HYDROCHEMICAL CHARACTERISTICS AND GENESIS OF GROUNDWATER IN SOUTHERN SUBURB OF BEIJING PLAIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 99-107. doi: 10.13205/j.hjgc.202108013
    [15]LIU Zhao, ZHOU Hong, LIU Wei, CAO Wen-jia, LAN Sheng-tao. HEAVY METAL CONCENTRATION PROPERTIES ANALYSIS AND PRIMARY HEALTH RISK ASSESSMENT IN GROUNDWATER IN THE QINGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 196-203. doi: 10.13205/j.hjgc.202105028
    [16]CHEN Si-li, YI Zhong-yuan, WANG Ji, PAN Chao-yi, CHANG Sha, GUO Qing-wei, ZHOU Jun-guang, SUN Lan. CASE STUDY ON REMEDIATION OF DIESEL CONTAMINATED SOIL AND GROUNDWATER BY ELUENT-EXTRACTION TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 178-182. doi: 10.13205/j.hjgc.202001029
    [17]WEI Jing, ZHENG Xiao-gang, ZHANG Guo-wei, ZHANG Yan-xi, WANG Cai-ling, WANG Ran. NITROGEN AND PHOSPHORUS CONTENT OF SURFACE WATER IN THE UPSTREAM BASIN OF GUANTING RESERVOIR AND MIYUN RESERVOIR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 101-105,144. doi: 10.13205/j.hjgc.202009017
    [18]GAO Shang, HU Peng, CUI Song, ZHANG Zu-lin, XING Zhen-xiang, ZHANG Fu-xiang. NUMERICA SIMULATION AND UNCERTAINTY ANALYSIS OF SURFACE RUNOFF IN NAOLI RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 83-89. doi: 10.13205/j.hjgc.202010013
    [19]Li Jingjie Cai Wutian Geng Tingting Liu Jiangtao Liu Jinwei Zhang Tao Cao Yueting, . THE EFFECTS OF FIELD MEASURING CONDITIONS ON PETROLEUM CONTAMINATION GROUNDWATER CONVENTIONAL WATER CHEMISTRY PARAMETERS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 70-74. doi: 10.13205/j.hjgc.201504015
    [20]Liu Yi, Dong Wenna, Li Ye, Ren Peifang. PROGRESS IN RESEARCH ON POLLUTION STATUS AND HAZARDS OF PERFLUORINATED ORGANIC COMPOUNDS ( PFCs) IN SURFACE WATER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 43-47. doi: 10.13205/j.hjgc.201502009
  • Cited by

    Periodical cited type(10)

    1. 张庆民,赵庚润,刘晨宇. 典型系统泵站放江对城市河道水质弹性的影响分析. 四川环境. 2025(01): 16-23 .
    2. 折帅,董高明,罗黑龙,张海洋,陆丽花,刘子扬. 基于SWMM模型的产业园区LID设施方案评估研究. 施工技术(中英文). 2025(04): 151-156+166 .
    3. 程新月,王昊,李智,周晋军. 基于OPUT的城市LID设施防涝布设方法. 清华大学学报(自然科学版). 2024(04): 638-648 .
    4. 张惠,黄志金,张庆民. 基于数值模拟的雨水泵站放江污染控制研究. 四川环境. 2023(06): 8-15 .
    5. 王二松,宫永伟,周国华. 基于SWMM的天津市某海绵型建筑小区径流水量水质效果模拟分析. 环境工程. 2023(12): 48-53+115 . 本站查看
    6. 戎贵文,甘丹妮,李姗姗,孙浩淼,王莉莉. 不同LID设施的面积比例优选及径流污染控制效果. 水资源保护. 2022(03): 168-173+204 .
    7. 解超,王思思,吕彬. 基于LCA的北京市透水水泥混凝土路面的环境影响分析. 环境工程. 2022(09): 118-125 . 本站查看
    8. 靳伟,赵军伟,孙健,黄鹏程. 山区河流倒灌引发管网溢流洪水数值模拟研究. 中国农村水利水电. 2022(11): 77-82 .
    9. 胥瑞晨,逄勇,胡祉冰. 1990-2019年江苏片区入太湖水量变化及原因分析. 湖泊科学. 2021(03): 797-805 .
    10. 纪亚星,同玉,侯精明,苏锋,杨霄,吕鹏,李东来,石佳. 西咸新区海绵城市建设对沣河洪水特性影响模拟研究. 水资源与水工程学报. 2021(02): 50-57 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.7 %FULLTEXT: 14.7 %META: 82.5 %META: 82.5 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.2 %其他: 7.2 %China: 3.8 %China: 3.8 %[]: 0.3 %[]: 0.3 %临汾: 0.3 %临汾: 0.3 %伊利诺伊州: 0.3 %伊利诺伊州: 0.3 %信阳: 0.7 %信阳: 0.7 %北京: 1.0 %北京: 1.0 %台州: 3.8 %台州: 3.8 %天津: 1.4 %天津: 1.4 %宣城: 0.7 %宣城: 0.7 %常德: 0.3 %常德: 0.3 %广州: 0.7 %广州: 0.7 %张家口: 1.7 %张家口: 1.7 %成都: 0.3 %成都: 0.3 %扬州: 0.3 %扬州: 0.3 %无锡: 0.7 %无锡: 0.7 %昆明: 0.3 %昆明: 0.3 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.3 %朝阳: 0.3 %杭州: 3.4 %杭州: 3.4 %格兰特县: 0.3 %格兰特县: 0.3 %武汉: 1.4 %武汉: 1.4 %法兰克福: 2.1 %法兰克福: 2.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %济源: 0.3 %济源: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.7 %温州: 0.7 %湖州: 1.0 %湖州: 1.0 %漯河: 2.1 %漯河: 2.1 %烟台: 0.3 %烟台: 0.3 %石家庄: 0.3 %石家庄: 0.3 %红河哈尼族彝族自治州: 0.3 %红河哈尼族彝族自治州: 0.3 %芒廷维尤: 19.2 %芒廷维尤: 19.2 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.7 %苏州: 0.7 %衢州: 0.7 %衢州: 0.7 %西宁: 30.5 %西宁: 30.5 %贵阳: 0.7 %贵阳: 0.7 %运城: 3.4 %运城: 3.4 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.7 %郑州: 1.7 %重庆: 0.3 %重庆: 0.3 %长治: 0.3 %长治: 0.3 %阜阳: 1.0 %阜阳: 1.0 %阳泉: 2.1 %阳泉: 2.1 %其他China[]临汾伊利诺伊州信阳北京台州天津宣城常德广州张家口成都扬州无锡昆明晋城朝阳杭州格兰特县武汉法兰克福洛阳济南济源深圳温州湖州漯河烟台石家庄红河哈尼族彝族自治州芒廷维尤芝加哥苏州衢州西宁贵阳运城遵义邯郸郑州重庆长治阜阳阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (401) PDF downloads(18) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return