Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
MA Yong-shuang, ZHAN Ju-hong, WANG Hui-jiao, WANG Yu-jue. STUDY ON ABATEMENT OF ACETAMIPRID BY ELECTRO-PEROXONE PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 107-113,187. doi: 10.13205/j.hjgc.202112016
Citation: LIN Chu-qiao, YI Yun-jun, LIU Tie. WATER SYSTEM CONNECTIVITY EVALUATION AND OPTIMIZATION CONTROL IN BOSTEN LAKE BASIN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 21-25. doi: 10.13205/j.hjgc.202010004

WATER SYSTEM CONNECTIVITY EVALUATION AND OPTIMIZATION CONTROL IN BOSTEN LAKE BASIN

doi: 10.13205/j.hjgc.202010004
  • Received Date: 2020-05-27
  • In order to explore the comprehensive ecological environment of Bosten Lake basin, based on the water quality and water quantity biological data of Bosten Lake and Kaidu River of 2000—2018, this paper used fuzzy evaluation mathematical model to evaluate the current water system situation of the basin, analyzed the water quantity of Bosten Lake and Kaidu River, and preliminarily proposed the optimal control method of water system. The results showed that the water flow of the Kaidu River and the water level of the Bosten Lake in 2000—2018 showed a trend of decreasing first and then increasing. After 2014, the water volume of the Bosten Lake Basin began to surplus; the degree of ecological water demand in Bosten Lake Basin was poor on the whole, showing a tendency of gradual recovery after deterioration. Aiming at the status quo of the water system connection of the Bosten Lake, the basic regulation methods of the Bosten Lake water system with increasing path, in-situ strengthening and node regulation were proposed. The water demand regulation could meet the ecological water demand of the Bosten Lake and increase the ecological water supply of the Peacock River. The scientific combination of the three control methods provided better protection for the water quality of the Bosten Lake, and the industrial, agricultural and domestic water supply of downstream of the Peacock River.
  • 王中根,李宗礼,刘昌明, 等.河湖水系连通的理论探讨[J].自然资源学报,2011,26(3):523-529.
    魏光辉.基于SDSM模型的博斯腾湖流域水资源变化模拟[J].西北水电,2018(3):5-10.
    夏军,高扬,左其亭, 等.河湖水系连通特征及其利弊[J].地理科学进展,2012,31(1):26-31.
    张欧阳,熊文,丁洪亮.长江流域水系连通特征及其影响因素分析[J].人民长江,2010,41(1):1-5

    ,78.
    徐宗学,庞博.科学认识河湖水系连通问题[J].中国水利,2011(16):13-16.
    李原园,黄火键,李宗礼, 等.河湖水系连通实践经验与发展趋势[J].南水北调与水利科技,2014,12(4):81-85.
    陈亚宁,郝兴明,陈亚鹏, 等.新疆塔里木河流域水系连通与生态保护对策研究[J].中国科学院院刊,2019,34(10):1156-1164.
    刘文,吉力力·阿不都外力, 马龙.博斯腾湖表层沉积物元素地球化学特征及重金属污染评价[J].地球环境学报,2019,10(2):128-140.
    阿依加玛丽·吾甫尔.开都-孔雀河流域现状及博斯腾湖水位下降的分析建议[J].水利科技与经济,2017,23(2):41-43

    ,63.
    武斌.新疆焉耆河湖水系连通工程总体构想[J].吉林农业,2018(3):72,76.
    何志刚.关于新疆孔雀河下游生态输水工作探讨[J].建材与装饰,2019(3):290-291.
    张皓,李新国,闫凯, 等.博斯腾湖小湖区景观动态变化特征[J].海洋湖沼通报,2017(3):23-30.
    李卫红,吾买尔江·吾布力,马玉其, 等.基于河-湖-库水系连通的孔雀河生态输水分析[J].沙漠与绿洲气象,2019,13(1):130-135.
    吴红波.基于星载雷达测高资料估计博斯腾湖水位-水量变化研究[J].水资源与水工程学报,30(3):9-16,23.
    孙英,周金龙,曾妍妍.环博斯腾湖地区地下水有机污染现状评价[J].干旱区资源与环境,2018,32(12):185-191.
    罗燕,谢海燕.博斯腾湖水体矿化度变化驱动因子分析[J].环境与发展,2018,30(11):167-168

    ,170.
    买尔哈巴·买买提汗.博斯腾湖芦苇湿地的动态监测及驱动因素分析[D].乌鲁木齐:新疆师范大学,2017.
    宋永梅.博斯腾湖水质变化趋势分析[J].水利科技与经济,2015,21(7):16-18.
    祁峰,马燕武,李红, 等.新疆博斯腾湖轮虫群落季节动态及其影响因子[J].水生态学杂志,2017,38(3):51-57.
    穆尼热·赛买提.博斯腾湖芦苇覆盖率影响因素研究及预测[J].地下水,2018,40(1):180-181

    ,200.
    DAI X A, YANG X P, WANG M L, et al. The dynamic change of bosten lake area in response to climate in the past 30 years[J]. Water, 2019, 12(1):4.
    朱建春.博斯腾湖水位与其变化规律浅析[J].能源与节能,2020(5):70-72,84.
    刘剑.南湖水质模糊综合指数评价[J].吉林水利,2018(8):52-54.
    胡春明,娜仁格日乐,尤立.基于水质管理目标的博斯腾湖生态水位研究[J].生态学报,2019,39(2):748-755.
  • Relative Articles

    [1]YAO Haiqian, GUO Xinchao, FU Fengman, YANG Hao, GUO Xiang, ZHANG Fanghong. Mn-Fe-Ce/GAC CATALYZED OZONE OXIDATION TECHNOLOGY FOR ANILINE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 28-34. doi: 10.13205/j.hjgc.202405004
    [2]ZHANG Jianqiao, CHI Huizhong, LI Linyu. ANALYSIS OF VARIATION CHARACTERISTICS OF AIR QUALITY IN LUOHU DISTRICT OF SHENZHEN IN 2019[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 152-160. doi: 10.13205/j.hjgc.202402018
    [3]YANG Quan, LIU Sha, JIANG Chaochao, LIU Rongrong, ZHANG Peng, QIN Caihong. DEGRADATION OF CHLOROBENZENE BY NONTHERMAL PLASMA COUPLED LIQUID PHASE Fe-C CATALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 85-94. doi: 10.13205/j.hjgc.202401012
    [4]FAN Maoqing, WU Qiao, ZHAO Fang, ZENG Ming, GU Huiwen, WANG Yushang. ANALYSIS OF OZONE POLLUTION SITUATION, CAUSES AND COUNTERMEASURES IN CHANGSHA IN 2019—2021[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 115-121. doi: 10.13205/j.hjgc.202403014
    [5]ZHOU Jianguo, WANG Jianyu, WEI Siti. PREDICTION OF PM2.5 AND OZONE CONCENTRATION BASED ON VMD-CEEMD DECOMPOSITION AND LSTM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 157-165,221. doi: 10.13205/j.hjgc.202306021
    [6]WANG Gang, ZHANG Xiayao, WANG Feifeng, SUN Qiyuan. EFFECT OF FULVIC ACID WITH DIFFERENT MOLECULAR WEIGHT ON UV DEGRADATION OF MICROCYSTINS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 32-37. doi: 10.13205/j.hjgc.202201006
    [7]DU Minghui, BI Yingying, DONG Li, WANG Yong, SUN Xiaoming. INFLUENCE MECHANISM OF ACTIVATED CARBON PARTICLE SIZE ON O3-AC TREATMENT OF ORGANIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 22-28. doi: 10.13205/j.hjgc.202204004
    [8]CHEN Li, LI Jia-bin, FU Wan-yi, ZHANG Xi-hui. EFFECT OF CERAMIC MEMBRANE COMBINED PROCESS IN TREATMENT OF SLUDGE WATER FROM DRINKING WATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 80-87,12. doi: 10.13205/j.hjgc.202107009
    [9]CHEN Jun-wei, LI Li-li, FANG Zhi-huang, YE Ling-fen, ZHENG Jia-hui, WANG Fei-feng. DEGRADATION OF HUMIC ACID IN WATER BY ULTRAVIOLET PHOTOCATALYSIS OF TiO2/GO COMPOSITE NANOMATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 89-95. doi: 10.13205/j.hjgc.202008015
    [10]SHAN Wei, WANG Yan, ZHENG Kai-kai, LI Ji. TECHNOLOGY COMPARISON AND ANALYSIS ON COD REMOVAL UPGRADING OF WASTEWATER TREATMENT PLANTS FOR HIGH PROPORTION OF INDUSTRY WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 32-37,24. doi: 10.13205/j.hjgc.202007005
    [11]ZHOU Sheng, HUANG Bao-yuan, CHEN Hui-ying, LIN Shao-xiong. POLLUTION CHARACTERISTICS OF PM2.5 AND O3 IN THE PEARL RIVER DELTA AND THE SENSITIVITY ANALYSIS OF VOCs COMPONENTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 42-47,92. doi: 10.13205/j.hjgc.202001006
    [15]Ma Wenjing, Zhang Chengzhong, Han Deming, Li Mingqian, Han Jing, Li Wentao. ANALYSIS ON VARIATION CHARACTERISTICS OF SURFACE OZONE CONCENTRATION IN URBAN AREA OF XI'AN IN SUMMER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 47-49. doi: 10.13205/j.hjgc.201510011
    [16]Li Zhenyan, Chen Bing. PHOTOCATALYTIC OXIDATION OF NAPHTHALENE AND FLUORINE IN OILFIELD PRODUCED WATER AND FACTORS AND CONDITIONS OPTIMIZATION ANALYSIS OF THE HYDROXYL RADICAL OXIDATION DEGRADATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 31-34. doi: 10.13205/j.hjgc.201510007
  • Cited by

    Periodical cited type(6)

    1. 张山风,高乐,刘朵,蔡佳男,王建华. 微塑料在某水厂水源与处理工艺中的时空分布. 净水技术. 2024(02): 62-69 .
    2. 黄茜,张俏俏,颜瑾,马晶晶,罗泽娇. 武汉农用地土壤中微塑料污染状况和生态风险初探. 环境工程. 2024(06): 136-145 . 本站查看
    3. 仇付国,梁安棋,童诗雨,王淳. 雨水径流中微塑料的赋存规律探究. 环境工程. 2024(07): 106-112 . 本站查看
    4. 张书琴,尚悦,程雅佳,朱彤,王周旋,樊赛军. 四溴双酚A对电离辐射诱导的斑马鱼肝脏毒性效应的影响. 中华放射医学与防护杂志. 2024(07): 578-586 .
    5. 林宣浩,吴鸣,卢国平,程洲,谢林君,吴宇恒,曾拥军,郝艳茹,莫测辉. 聚酰胺微塑料对双酚A在地下水中迁移的影响. 农业环境科学学报. 2023(04): 861-868 .
    6. 邵雅婷,徐凌,陈郁. 禁塑令背景下不同材质吸管环境友好性比较研究. 环境污染与防治. 2023(07): 999-1006 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.2 %FULLTEXT: 11.2 %META: 85.4 %META: 85.4 %PDF: 3.4 %PDF: 3.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.2 %其他: 15.2 %China: 0.6 %China: 0.6 %[]: 0.6 %[]: 0.6 %上海: 0.6 %上海: 0.6 %东莞: 0.6 %东莞: 0.6 %临汾: 0.6 %临汾: 0.6 %信阳: 0.6 %信阳: 0.6 %北京: 1.1 %北京: 1.1 %南京: 0.6 %南京: 0.6 %南昌: 0.6 %南昌: 0.6 %台州: 6.2 %台州: 6.2 %天津: 0.6 %天津: 0.6 %常德: 0.6 %常德: 0.6 %弗吉: 0.6 %弗吉: 0.6 %张家口: 2.8 %张家口: 2.8 %成都: 1.7 %成都: 1.7 %扬州: 0.6 %扬州: 0.6 %昆明: 0.6 %昆明: 0.6 %晋城: 1.1 %晋城: 1.1 %朝阳: 0.6 %朝阳: 0.6 %杭州: 4.5 %杭州: 4.5 %武汉: 0.6 %武汉: 0.6 %济源: 0.6 %济源: 0.6 %海口: 0.6 %海口: 0.6 %温州: 0.6 %温州: 0.6 %漯河: 1.7 %漯河: 1.7 %石家庄: 0.6 %石家庄: 0.6 %石河子: 0.6 %石河子: 0.6 %芒廷维尤: 23.0 %芒廷维尤: 23.0 %苏州: 5.6 %苏州: 5.6 %衢州: 3.4 %衢州: 3.4 %西宁: 6.2 %西宁: 6.2 %西安: 2.2 %西安: 2.2 %贵阳: 0.6 %贵阳: 0.6 %运城: 5.1 %运城: 5.1 %遵义: 0.6 %遵义: 0.6 %邢台: 1.1 %邢台: 1.1 %邯郸: 0.6 %邯郸: 0.6 %郑州: 3.9 %郑州: 3.9 %重庆: 0.6 %重庆: 0.6 %长春: 0.6 %长春: 0.6 %长沙: 0.6 %长沙: 0.6 %青岛: 0.6 %青岛: 0.6 %其他China[]上海东莞临汾信阳北京南京南昌台州天津常德弗吉张家口成都扬州昆明晋城朝阳杭州武汉济源海口温州漯河石家庄石河子芒廷维尤苏州衢州西宁西安贵阳运城遵义邢台邯郸郑州重庆长春长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (257) PDF downloads(7) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return