Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
He Yuzhong Zhao Haibao Li Jianguo Yao Yuping, . CALCULATION OF DUST/SO3 RATIO FOR LOW-LOW TEMPERATURE ELECTROSTATICPRECIPITATOR AND ANALYSIS OF COALS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 76-79. doi: 10.13205/j.hjgc.201502016
Citation: LI Wei, WANG Ke-xin, GONG Zhen-lin, ZHANG Ji-guang, LIU Bao-xia, MA Meng-jie, LAN Ye-qing. EFFICIENT DEGRADATION OF RHODAMINE B BY MICRO-SCALE ZINC-COPPER (mZn/Cu) BIMETALLIC PARTICLES UNDER ACIDIC CONDITION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 60-65,52. doi: 10.13205/j.hjgc.202011010

EFFICIENT DEGRADATION OF RHODAMINE B BY MICRO-SCALE ZINC-COPPER (mZn/Cu) BIMETALLIC PARTICLES UNDER ACIDIC CONDITION

doi: 10.13205/j.hjgc.202011010
  • Received Date: 2019-10-09
    Available Online: 2021-04-23
  • Publish Date: 2021-04-23
  • In this paper, micro-scale zinc-copper (mZn/Cu) bimetallic particles were prepared via replacement reaction and applied in the removal of Rhodamine B. The effects of initial pH, mZn/Cu dosage and initial concentration on the degradation of Rhodamine B were investigated. The optimal conditions for the degradation of of Rhodamine B was determined through single-factor experiment. As compared with single metals, the formation of microbatteries on mZn/Cu greatly improved its ability to provide electrons and its chemical activity, resulting in more efficient degradation of Rhodamine B. When N2 was bubbled into the reaction system to remove the dissolved oxygen and the scavengers such as tert-butyl alcohol (TBA) and benzoquinone (BQ) were introduced, the degradation of Rhodamine B was also greatly inhibited. This proved that under acidic and aerobic conditions, the dissolved oxygen could accepted electrons from the surface of mZn/Cu to produce ·OH and O2-· radicals responsible for the rapid removal of Rhodamine B. Thus, this study not only provided a low-cost and high-efficiency technology for the degradation of organic contaminants in aqueous solution, but also put insight into the mechanism of the reaction.
  • 尤宏, 姚杰, 罗薇楠, 等. TiO2/SiO2 催化剂光催化降解罗丹明B的表观动力学[J]. 环境科学, 2006, 27(11):2154-2158.
    王春英, 江桐桐, 周丹, 等. 掺铁钨酸铋的制备及光催化降解罗丹明B的研究[J]. 江西理工大学学报, 2013,34(1):7-12.
    ABBASI M, SOLEYMANI A R, PARSA J B. Degradation of Rhodamine B by an electrochemical ozone generating system consist of a Ti anode coated with nanocomposite of Sn-Sb-Ni oxide[J]. Process Safety and Environmental Protection, 2015, 94:140-148.
    LENG Y Q, GUO W L, SHI X, et al. Degradation of rhodamine B by persulfate activated with Fe3O4:effect of polyhydroquinone serving as an electron shuttle[J]. Chemical Engineering Journal, 2014, 240:338-343.
    HOU M F, LIAO L, ZHANG W D, et al. Degradation of rhodamine B by Fe0-based Fenton process with H2O2[J]. Chemosphere, 2011, 83(9):1279-1283.
    ALHAMEDI F H, RAUF M A, ASHRAF S S. Degradation studies of Rhodamine B in the presence of UV/H2O2[J]. Desalination, 2009, 239(1/2/3):159-166.
    KALLEL M, BELAID C, BOUSSAHEL R, et al. Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide[J]. Journal of Hazardous Materials, 2009, 163(2/3):550-554.
    LIAO C J, CHUNG T L, CHEN W L, et al. Treatment of pentachlorophenol-contaminated soil using nano-scale zero-valent iron with hydrogen peroxide[J]. Journal of Molecular Catalysis A:Chemical, 2007, 265(1/2):189-194.
    KEENAN C R, SEDLAK D L. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(4):1262-1267.
    SUZUKI TASUMA, MORIBE M, OYAMA YUKINORI, et al. Mechanism of nitrate reduction by zero-valent iron:equilibrium and kinetics studies[J]. Chemical Engineering Journal, 2012, 183:271-277.
    WEN G, WANG S J, MA J, et al. Oxidative degradation of organic pollutants in aqueous solution using zero valent copper under aerobic atmosphere condition[J]. Journal of Hazardous Materials, 2014, 275:193-199.
    XU W Y, GAO T Y. Dechlorination of carbon tetrachloride by the catalyzed Fe-Cu process[J]. Journal of Environmental Sciences, 2007, 19(7):792-799.
    MA L M, DING Z G, GAO T Y, et al. Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system[J]. Chemosphere, 2004, 55(9):1207-1212.
    LIEN H L, ZHANG W X. Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al[J]. Chemosphere, 2002, 49(4):371-378.
    LAI B, ZHANG Y H, CHEN Z Y, et al. Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron-copper (Fe/Cu) bimetallic particles[J]. Applied Catalysis B:Environmental, 2014, 144:816-830.
    JI Q Q, LI J, XIONG Z K, et al. Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution[J]. Chemosphere, 2017, 172:10-20.
    LI W, CHEN C, ZHU J Y, ZHOU LX, Lan Y Q, Efficient removal of aniline by micro-scale zinc-copper (mZn/Cu) bimetallic particles in acidic solution:an oxidation degradation mechanism via radicals[J]. Journal of hazardous materials, 2019, 366:482-491.
    ZHANG J, WU Y, QIN C, et al. Rapid degradation of aniline in aqueous solution by ozone in the presence of zero-valent zinc[J]. Chemosphere, 2015, 141:258-264.
    XIE H, YE X L, DUAN K Y, et al. CuAu-ZnO-graphene nanocomposite:a novel graphene-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance[J]. Journal of Alloys and Compounds, 2015, 636:40-47.
    SHU H Y, CHANG M C, CHEN C C, et al. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution[J]. Journal of Hazardous Materials, 2010, 184(1/2/3):499-505.
    QIU X H, FANG Z Q, LIANG B, et al. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres[J]. Journal of Hazardous Materials, 2011, 193:70-81.
    PENG A, HUANG M Y, CHEN Z Y, et al. Oxidative coupling of acetaminophen mediated by Fe3+-saturated montmorillonite[J]. Science of the Total Environment, 2017, 595:673-680.
    KIM D G, KO S O. Cu@Fe3O4 core-shell nanoparticle-catalyzed oxidative degradation of the antibiotic oxytetracycline in pre-treated landfill leachate[J]. Chemosphere, 2018, 191:639-650.
    JUN B M, ELANCHEZHIYAN S S D, YOON Y, et al. Accelerated photocatalytic degradation of rhodamine B over carbonate-rich lanthanum-substituted zinc spinel ferrite assembled reduced graphene oxide by ultraviolet (UV)-activated persulfate[J]. Chemical Engineering Journal, 2020,393:124733.
  • Relative Articles

    [1]CUI Qian, ZHOU Zhixiang, GUAN Dongjie, XUE Yuqian. Research progress on accounting, modeling and influencing factors of transportation carbon emissions[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 31-41. doi: 10.13205/j.hjgc.202501004
    [2]HE Zihao, YI Mengting, ZHONG Qiumeng, LIANG Sai. INFLUENCING FACTORS OF SYNERGY DEGREE FOR INDUSTRIAL POLLUTANT AND CARBON REDUCTIONS IN CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 206-214. doi: 10.13205/j.hjgc.202401027
    [3]LI Cheng, LU Binbin, YI Xinyuan, SHAO Xuehong, XU Bin, TANG Yulin. CARBON EMISSION CHARACTERISTICS AND INFLUENCING FACTORS OF TYPICAL WATER SUPPLY PLANTS IN SHANGHAI BASED ON MONTHLY DATA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 131-139. doi: 10.13205/j.hjgc.202411014
    [4]ZHENG Xiaoying, LI Wenfei, ZHANG Huijie, HU Ruijie, XU Yadong, HAN Zongshuo, HE Haidong, CHEN Wei. RESEARCH ON ENDOGENOUS PARTIAL DENITRIFICATION GRANULAR SLUDGE CULTIVATION AND KEY INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 116-123. doi: 10.13205/j.hjgc.202409011
    [5]HE Kaijie, HE Youjiang, YANG Xin, CHENG Miaomiao, LI Fuqiang, PENG Yujie, LI Bin. CHARACTERISTICS AND INFLUENCING FACTORS OF ATMOSPHERIC NH3 POLLUTION IN SHIHEZI[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 162-170. doi: 10.13205/j.hjgc.202407018
    [6]YUAN Ye, GAO Jun, ZHANG Lulu, CHEN Tianming, DING Cheng. RESEARCH PROGRESS ON INFLUENCING FACTORS AND THEIR PREDICTION MODELS OF HYDROGEN SULFIDE GENERATION IN MUNICIPAL SEWAGE PIPELINES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 69-77. doi: 10.13205/j.hjgc.202311013
    [7]REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023
    [8]MA Yan, ZHANG Dading, ZHANG Fan, CHENG Lu, MA Yue, GUO Jianda. INFLUENTING FACTORS OF CHITOSAN-MODIFIED ZEOLITE AND ITS STABILIZATION EFFECT ON MULTI METAL CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 94-101,116. doi: 10.13205/j.hjgc.202201014
    [9]CHEN Yue, PAN Yang, NI Min, HUANG Yong, LI Da-peng, BI Zhen, ZHANG Xing-yu, WEN Lin-xiao. ANALYSIS OF INFLUENCING FACTORS OF PHOSPHATE ENHANCED ABSORPTION IN BSBR PROCESS UNDER LOW CARBON SOURCE CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 69-73,191. doi: 10.13205/j.hjgc.202209009
    [10]TANG Xin-yi, CHEN Xiang-yu, XIAO Ben-yi, LIU Rong-zhan. THERMAL-ALKALINE TREATMENT OF SEWAGE SLUDGE AND ITS ENHANCEMENT ON ANAEROBIC SLUDGE DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 218-226. doi: 10.13205/j.hjgc.202205031
    [11]XU Ziqi, YAN Zhong, GE Yanju, WEI Quanyuan, HUANG Bo. OPTIMIZATION OF TECHNICAL PARAMETERS OF MECHANICAL ENHANCED RAPID COMPOSTING TECHNOLOGY FOR ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 159-163,142. doi: 10.13205/j.hjgc.202208022
    [12]CHEN Si-yu, ZHANG Shao-qing, CHEN Peng, CHEN Qiu-li, ZHANG Li-qiu, LI Shu-geng. RECENT ADVANCES IN PARTIAL DENITRIFICATION BASED BIOLOGICAL NITROGEN REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 38-44. doi: 10.13205/j.hjgc.202105006
    [13]XU Chuang, WU Yin-hu, HU Hong-ying, XU Ao, NI Xin-ye. CHLORINE DIOXIDE'S INACTIVATION ON DIFFERENT MICROORGANISMS AND ITS INFLUENCE ON THE CHARACTERISTICS OF MICROBIAL COMMUNITY STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 57-63. doi: 10.13205/j.hjgc.202110008
    [14]LI Chung-yan, ZHANG Xi, SHEN Yu-jun, MENG Hai-bo, WEN Hong-da, ZHENG Sheng-wei, ZHOU Hai-bin, CHENG Hong-sheng. EFFECTS OF TURNING STRATEGY ON AEROBIC FERMENTATION PROPERTY OF PIG BIOGAS RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 130-135. doi: 10.13205/j.hjgc.202101020
    [15]XU Chen, ZHAN Jian, HU Jia-jun, WANG Liu-peng, CHEN Yun-hui, XUE Zhen-zhou. RESEARCH PROGRESS ON INFLUENCING FACTORS OF RAINWATER RUNOFF RETENTION AND POLLUTION INTERCEPTION EFFECT OF EXTENSIVE GREEN ROOF[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 76-81. doi: 10.13205/j.hjgc.202009013
    [16]ZHU Wen-bin, GAO Ming, YIN Zi-he, WU Chuan-fu, WANG Qun-hui. RESEARCH PROGRESS ON CAPROIC ACID PRODUCTION FROM ORGANIC WASTE BY ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 128-134. doi: 10.13205/j.hjgc.202001020
    [17]WANG Lei, ZHAN Han-hui, WANG Qing-qing, WU Gang. RESEARCH PROGRESS OF INFLUENCE PARAMETERS AND METHODS FOR RAPIDLY CULTIVATING AEROBIC GRANULAR SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 1-7,29. doi: 10.13205/j.hjgc.202005001
    [18]CHEN Feng, CHEN Dan, HU Yong-you. ANALYSIS ON INFLUENCING FACTORS OF EFFECT OF HIGH TEMPERATURE AEROBIC BIOLOGICAL DRYING PROCESS OF GARBAGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 141-145. doi: 10.13205/j.hjgc.202001022
    [19]LIU Wen-jie, WANG Li-ming, SHEN Yu-jun, ZHANG Xi, MENG Hai-bo, FAN Sheng-yuan, ZHANG Da-niu. EFFECTS OF CARBON TO NITROGEN RATIO ON MATURITY AND ODOR EMISSION IN AEROBIC FERMENTATION OF VEGETABLE WASTE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 233-239. doi: 10.13205/j.hjgc.202006038
    [20]CALCULATION OF CARBON EMISSION REDUCTION OF NEW ENERGY VEHICLES AND ANALYSIS OF ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 148-152. doi: 10.13205/j.hjgc.201412027
  • Cited by

    Periodical cited type(27)

    1. 李海荣,王先虎. 燃煤耦合污泥发电机组电除尘器腐蚀诊断. 发电设备. 2024(02): 119-124 .
    2. 陈祥云,斯高峰,周蔡宇. 电除尘器锯齿线电场在线恢复技术研究. 电力与能源. 2024(03): 368-369+388 .
    3. 赵海宝,钱水军,何毓忠,徐越前,王飞燕. 越南燃煤烟气静电除尘特性分析及工程应用. 电力与能源. 2023(04): 395-400 .
    4. 李东阳,刘玺璞,张超. 低低温电除尘器除尘效率公式的修正. 中国电机工程学报. 2022(07): 2623-2630 .
    5. 郭海鹰,赵金达,朱锦杰,范妙春,杨军. 燃煤机组电除尘超低排放改造技术研究. 电力与能源. 2021(02): 240-244 .
    6. 李锦萍,熊英莹,宋婷婷,赵超群,胡飞. 酸化蒸发法对亚微米细颗粒物团聚和脱除性能的影响. 洁净煤技术. 2021(05): 224-232 .
    7. 张知翔,徐党旗,车宏伟,贾兆鹏,李文锋,邹小刚,李楠. 高硫煤机组尾部烟道中灰硫分布规律研究. 热力发电. 2020(09): 104-108 .
    8. 张知翔,许良,徐党旗,邹小刚,李文锋,李楠,车宏伟. 高硫煤机组低低温省煤器积灰特性研究. 热力发电. 2020(12): 135-139 .
    9. 潘志越. 新一代媒介式烟气—烟气换热器在小型机组系统布置方案研究. 电力与能源. 2020(06): 747-752 .
    10. 郭海鹰,朱锦杰,赵金达,金扬,毛佳倩. 超低排放下电除尘提效技术的研究及改造. 电力与能源. 2020(06): 758-760+766 .
    11. 胡成,陈炬钢,徐召金. 浅谈低低温电除尘器的优化设计. 山东化工. 2020(23): 147-149 .
    12. 徐克涛,马俊飞,张杨. 水媒式烟气换热装置的运行现状分析与优化措施探讨. 中国电力. 2019(01): 118-123 .
    13. 赵海宝,何毓忠,周冰. 低低温电除尘超低排放工程分析. 中国环保产业. 2019(11): 33-36 .
    14. 金玉健. 影响燃用石油焦玻璃熔窑烟气治理设施稳定运行的因素分析. 节能与环保. 2018(08): 63-65 .
    15. 赵海宝,郭滢,詹立勇. 低低温电除尘器蒸汽换热系统设计与应用. 电力科技与环保. 2018(03): 39-41 .
    16. 胡露钧,赵海宝,沈家栋,马湖刚,何毓忠. 低低温电除尘与常规电除尘工程应用对比分析. 环境工程. 2018(01): 67-70+61 . 本站查看
    17. 赵海宝,何毓忠,章永玮,詹立勇,郭滢. 复杂多变工况下低低温电除尘适应性研究. 环境工程. 2018(06): 82-85 . 本站查看
    18. 杨琳,李军状,张运宇,赵洋. 基于新标准的燃煤机组电除尘器提效改造性能试验研究. 环境污染与防治. 2018(08): 922-926+949 .
    19. 沈家栋,赵海宝. 低低温电除尘器绝缘装置设计与分析. 中国电力. 2018(03): 150-154 .
    20. 吴金,赵海宝,郦建国,郭滢,何毓忠. 低低温电除尘器在1000MW机组燃煤电厂的应用. 中国环保产业. 2018(01): 31-34 .
    21. 于伟静. 燃煤电厂烟尘超低排放技术研究现状及发展. 化工进展. 2017(S1): 428-435 .
    22. 郭凯岳,苏伟,宋存义,童震松,吴雪娜. 燃煤电厂粉尘超净排放控制技术研究现状与进展. 现代化工. 2017(01): 14-17+19 .
    23. 邵媛,薛方明. 低低温电除尘器应用于燃煤电厂关键技术研究. 环保科技. 2016(05): 51-54 .
    24. 沈家栋,赵海宝. 常规电除尘器低低温改造分析与研究. 环境工程. 2016(11): 68-71+75 . 本站查看
    25. 邵媛,徐劲松. 燃煤烟气SO_3检测及控制技术探讨. 东北电力技术. 2016(04): 49-52 .
    26. 杨倩. 电除尘低低温改造设计及工程应用. 电力与能源. 2016(05): 624-627 .
    27. 沈艳梅,董琨,崔智勇,魏书洲. 低低温电除尘器设计烟温的理论计算及存在问题. 中国电力. 2016(07): 151-156 .

    Other cited types(20)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.0 %FULLTEXT: 20.0 %META: 78.8 %META: 78.8 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.5 %其他: 13.5 %China: 0.8 %China: 0.8 %Japan: 0.8 %Japan: 0.8 %[]: 0.4 %[]: 0.4 %上海: 3.3 %上海: 3.3 %东莞: 0.4 %东莞: 0.4 %临汾: 0.8 %临汾: 0.8 %保定: 0.4 %保定: 0.4 %北京: 1.2 %北京: 1.2 %南京: 0.8 %南京: 0.8 %台州: 1.2 %台州: 1.2 %天津: 1.2 %天津: 1.2 %常德: 0.4 %常德: 0.4 %广州: 0.4 %广州: 0.4 %弗吉: 0.4 %弗吉: 0.4 %张家口: 0.8 %张家口: 0.8 %成都: 0.4 %成都: 0.4 %扬州: 0.4 %扬州: 0.4 %拉贾斯坦邦: 0.4 %拉贾斯坦邦: 0.4 %晋城: 1.6 %晋城: 1.6 %朝阳: 0.4 %朝阳: 0.4 %杭州: 0.8 %杭州: 0.8 %格兰特县: 0.4 %格兰特县: 0.4 %济源: 0.8 %济源: 0.8 %温州: 2.0 %温州: 2.0 %湖州: 0.8 %湖州: 0.8 %滨州: 0.4 %滨州: 0.4 %漯河: 0.8 %漯河: 0.8 %盐城: 0.8 %盐城: 0.8 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 26.1 %芒廷维尤: 26.1 %芝加哥: 2.4 %芝加哥: 2.4 %苏州: 0.4 %苏州: 0.4 %衢州: 0.4 %衢州: 0.4 %西宁: 27.8 %西宁: 27.8 %贵阳: 0.4 %贵阳: 0.4 %运城: 2.9 %运城: 2.9 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %重庆: 0.4 %重庆: 0.4 %长治: 0.4 %长治: 0.4 %其他ChinaJapan[]上海东莞临汾保定北京南京台州天津常德广州弗吉张家口成都扬州拉贾斯坦邦晋城朝阳杭州格兰特县济源温州湖州滨州漯河盐城石家庄芒廷维尤芝加哥苏州衢州西宁贵阳运城遵义邯郸重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (194) PDF downloads(6) Cited by(47)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return