Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XU Zhilong, YU Naichuan, SUN Huijie, WANG Qunhui. MECHANISM AND TOXICITY ANALYSIS OF SULFAMETHAZINE DEGRADATION BY ELECTRO-FENTON SYSTEM USING NATURAL TOURMALINE AS THE CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 89-95. doi: 10.13205/j.hjgc.202309011
Citation: DUAN Shou-peng, ZHENG Shao-kui. EFFECT OF NAHCO3 ADDITION INTO NaCl REGENERANT ON NITRATE-SELECTIVE ION EXCHANGE REMOVAL PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 72-77. doi: 10.13205/j.hjgc.202011012

EFFECT OF NAHCO3 ADDITION INTO NaCl REGENERANT ON NITRATE-SELECTIVE ION EXCHANGE REMOVAL PROCESS

doi: 10.13205/j.hjgc.202011012
  • Received Date: 2020-03-04
    Available Online: 2021-04-23
  • Publish Date: 2021-04-23
  • The nitrate removal performance from spent brine by electrolysis was investigated, with 10 g/L NaHCO3 added into 6 g/L NaCl regenerant as a pH buffer. Besides a stable pH level (8.3~9.1) during 8 h electrolysis of spent brine, there was a higher nitrate removal efficiency (i.e., 96%) achieved by the addition of NaHCO3 than those achieved by the addition of diluted HCl solution and even without pH adjustment. The addition of NaHCO3 also protected Fe cathodic plate from attacks of aggressive ions (e.g., chloride) in regenerant. The increase in NaCl concentration in regenerant from 6 g/L to 36 g/L led to a remarkable decrease in nitrate removal by 20%. Subsequently, this study investigated the long-term operation performance (i.e., 13 cycles) of the nitrate-selective ion exchange-regeneration-spent brine electrolysis process for nitrate-ridden groundwater treatment, with the addition of 10 g/L NaHCO3 into 6 g/L NaCl regenerant. There were no side effect on product water quality, resin nitrate selectivity, regenerant elution capacity, and nitrate accumulation characteristics in regenerant observed after the addition of NaHCO3. Nitrate concentration in product water stably met the required water quality standards for drinking water throughout the experimental periods.
  • FAUR-BRASQUET C,KADIRVELU K,LE CLOIREC P.Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths:adsorption competition with organic matter[J].Carbon,2002,40(13):2387-2392.
    YANG T,DOUDRICK K,WESTERHOFF P.Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine[J].Water Research,2013,47(3):1299-1307.
    CHOE J K,BERGQUIST A M,JEONG S,et al. Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate[J].Water Research,2015,80:267-280.
    LIU X S,CLIFFORD D A.Ion exchange with denitrified brine reuse[J].Journal American Water Works Association,1996,88(11):88-99.
    LI Q,HUANG B,CHEN X,et al. Cost-effective bioregeneration of nitrate-laden ion exchange brine through deliberate bicarbonate incorporation[J].Water Research,2015,75:33-42.
    BERGQUIST A M,CHOE J K,STRATHMANN T J,et al. Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water[J].Water Research,2016,96:177-187.
    PAIDAR M,BOUZEK K,JELINEK L,et al. A combination of ion exchange and electrochemical reduction for nitrate removal from drinking water Part Ⅱ:Electrochemical treatment of a spent regenerant solution[J].Water Environment Research,2004,76(7):2691-2698.
    PAIDAR M,ROUSAR I,BOUZEK K.Electrochemical removal of nitrate ions in waste solutions after regeneration of ion exchange columns[J].Journal of Applied Electrochemistry,1999,29(5):611-617.
    YU J,KUPFERLE M J.Two-stage sequential electrochemical treatment of nitrate brine wastes[J].Water, Air, & Soil Pollution:Focus,2008,8(3):379-385.
    JELINEK L,PARSCHOVA H,MATEJKA Z,et al. A combination of ion exchange and electrochemical reduction for nitrate removal from drinking water-Part Ⅰ:Nitrate removal using a selective anion exchanger in the bicarbonate form with reuse of the regenerant solution[J].Water Environment Research,2004,76(7):2686-2690.
    LI M,FENG C P,ZHANG Z Y,et al. Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method[J].Journal of Hazardous Materials,2009,171(1/2/3):724-730.
    LI M,FENG C P,ZHANG Z Y,et al. Treatment of nitrate contaminated water using an electrochemical method[J].Bioresource Technology,2010,101(16):6553-6557.
    SU L H,LI K,ZHANG H B,et al. Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode[J].Water Research,2017,120:1-11.
    LI L,LIU Y.Ammonia removal in electrochemical oxidation:mechanism and pseudo-kinetics[J].Journal of Hazardous Materials,2009,161(2/3):1010-1016.
    郑少奎,段守鹏,张雪雨,等.一种地下水中硝酸盐选择性去除工艺与设备:CN 109133252[P].2019-01-04.
    LEHMAN S G,BADRUZZAMAN M,ADHAM S,et al. Perchlorate and nitrate treatment by ion exchange integrated with biological brine treatment[J].Water Research,2008,42(4/5):969-976.
    ZHENG S K,LI X F,ZHANG X Y,et al. Effect of inorganic regenerant properties on pharmaceutical adsorption and desorption performance on polymer anion exchange resin[J].Chemosphere,2017,182:325-331.
    PINTAR A,BATISTA J,LEVEC J.Catalytic denitrification:direct and indirect removal of nitrates from potable water[J].Catalysis Today,2001,66(2):503-510.
    LI M,FENG C P,ZHANG Z Y,et al. Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2-Pt anode and different cathodes[J].Electrochimica Acta,2009,54(20):4600-4606.
    GADALA I M,ALFANTAZI A.Electrochemical behavior of API-X100 pipeline steel in NS4, near-neutral, and mildly alkaline pH simulated soil solutions[J].Corrosion Science,2014,82:45-57.
    ELIYAN F F,ALFANTAZI A.Investigating the significance of bicarbonate with the corrosion of high-strength steel in CO2-saturated solutions[J].Journal of Materials Engineering and Performance,2014,23(11):4082-4088.
    ELIYAN F F,ICRE F,ALFANTAZI A.Passivation of HAZs of API-X100 pipeline steel in bicarbonate-carbonate solutions at 298 K[J].Materials and Corrosion-Werkstoffe Und Korrosion,2014,65(12):1162-1171.
    CLIFFORD D,LIU X S.Ion-exchange for nitrate removal[J].Journal American Water Works Association,1993,85(4):135-143.
    VANDERHOEK J P,VANDERVEN P J M,KLAPWIJK A.Combined ion-exchange biological denitrification for nitrate removal from ground-water under different process conditions[J].Water Research,1988,22(6):679-684.
    PEREZ G,IBANEZ R,URTIAGA A M,et al. Kinetic study of the simultaneous electrochemical removal of aqueous nitrogen compounds using BDD electrodes[J].Chemical Engineering Journal,2012,197:475-482.
    LACASA E,LLANOS J,CANIZARES P,et al. Electrochemical denitrificacion with chlorides using DSA and BDD anodes[J].Chemical Engineering Journal,2012,184:66-71.
    DORTSIOU M,KATSOUNAROS I,POLATIDES C,et al. Electrochemical removal of nitrate from the spent regenerant solution of the ion exchange[J].Desalination,2009,248(1/2/3):923-930.
  • Relative Articles

    [1]XU Jinlan, TIAN Guiyong, SHI Qihang. ACCELERATION OF VARIOUS ALKANES BALANCED DEGRADATION BY SOIL MICROORGANISMS WITH FENTON PRE-OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 131-139. doi: 10.13205/j.hjgc.202302018
    [2]MA Qingpeng, YANG Kai, ZENG Yongqin, BI Xue, ZHOU Yan, ZHANG Zhuo. PERFORMANCE OF SCHWERTMANNITE IN FENTON-LIKE OXIDATION OF PHENOL IN LIQUID PHASE AND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 117-123,150. doi: 10.13205/j.hjgc.202306016
    [3]YANG Jiani, ZHAO Baowei, YANG Maoying, SUO Jinmiao, ZHU Zhengyu, DENG Aiqin. PREPARATION OF Fe/C CATALYST BASED ON FERRIC CITRATE AND ITS ACTIVATION PERFORMANCE ON PEROXYDISULFATE TO DEGRADE SULFADIAZINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 116-123,251. doi: 10.13205/j.hjgc.202307016
    [4]LIANG Ni, LIU Kai, KONG Ying, QI Zhaoxiong, CHEN Quan. RESEARCH PROGRESS ON INTERACTION BEHAVIORS AND MECHANISM OF CARBON-BASED MATERIALS AND VOLATILE ORGANIC COMPOUNDS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 260-270. doi: 10.13205/j.hjgc.202307035
    [5]WU Junji, NING Xunan. INFLUENCE OF PROPERTIES OF TEXTILE DYEING SLUDGE ON DISTRIBUTION AND DEGRADATION OF PAHs AFTER THE TREATMENT OF US-Fenton[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 106-112. doi: 10.13205/j.hjgc.202202017
    [6]YU Jing, GUO Xinchao, SUN Changshun, CHEN Xuan. REMOVAL OF REFRACTORY TETRAHYDROXYMETHYL PHOSPHORUS CHLORIDE IN TANNERY WASTEWATER BY FENTON OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 49-54. doi: 10.13205/j.hjgc.202210007
    [7]LIU Xiaodong, YU Tianfei, AI Jiamin, LI Jing, ZHANG Baobao, JIANG Yingying, DENG Zhenshan. INFLUENCE OF PETROLEUM CONTAMINATION ON SOIL MICROBIAL COMMUNITY AND ISOLATION AND IDENTIFICATION OF OIL-DEGRADING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 61-68. doi: DOI:10.13205/j.hjgc.202207009
    [8]SHANG Xiao-han, ZHU Xiao-biao. HETEROGENEOUS FENTON DEGRADATION OF BENZOTRIAZOLE IN WATER BY Fe/Cu/ZEOLITE CATALYST AT NEUTRAL pH VALUE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 10-15. doi: 10.13205/j.hjgc.202102002
    [9]GAO Yan-ming, WANG Ting, LI Jie-ling, WEI Shi-cheng, LIU Guang-li, LUO Hai-ping, ZHANG Ren-duo. ELECTRICITY GENERATION PROPERTIES OF MICROBIAL FUEL CELL WITH CORN COB ACID PYROLYSIS SOLUTION AS THE SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 127-134. doi: 10.13205/j.hjgc.202111016
    [10]YANG Tao, LIU Peng-yu, XU Ya-qiang, CHEN Dai-jie, JING Mei-ying, CHU Xiao-he. PILOT STUDY ON TREATMENT OF ACARBOSE RESIDUE BY A MULTI-STAGE ANAEROBIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 123-127. doi: 10.13205/j.hjgc.202104019
    [11]ZHANG Dan, HUO Ming-xin, LIU Zhong-mou, WANG Xian-ze, WANG Xiao-hong. DEGRADATION OF PHTHALATES ENVIRONMENTAL HORMONES WITH POLYOXOMETALATE-BASED CATALYST Ag4HPMo10V2O40[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 34-44. doi: 10.13205/j.hjgc.202108005
    [12]ZHANG Jing, ZHAO Jian-wei, SUN Ying-jie, WANG Ya-nan, XIN Ming-xue. EFFECT OF EMERGING POLLUTANTS ON PRODUCTION OF HYDROGEN FROM WASTE ACTIVATED SLUDGE ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 13-20. doi: 10.13205/j.hjgc.202008003
    [13]LI Ya-feng, ZHANG Ce, SHAN Lian-bin, ZHANG Lei. EXPERIMENTAL STUDY ON TREATMENT OF PHENOL WASTEWATER BY THREE-DIMENSIONAL ELECTRODE FENTON METHOD[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 1-5. doi: 10.13205/j.hjgc.202009001
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.0 %FULLTEXT: 12.0 %META: 85.9 %META: 85.9 %PDF: 2.1 %PDF: 2.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 33.6 %其他: 33.6 %其他: 0.4 %其他: 0.4 %China: 0.4 %China: 0.4 %三亚: 0.8 %三亚: 0.8 %上海: 0.8 %上海: 0.8 %东莞: 0.8 %东莞: 0.8 %保定: 0.4 %保定: 0.4 %加利福尼亚州: 2.1 %加利福尼亚州: 2.1 %北京: 5.8 %北京: 5.8 %十堰: 0.4 %十堰: 0.4 %南京: 4.1 %南京: 4.1 %南宁: 0.4 %南宁: 0.4 %台州: 1.2 %台州: 1.2 %大同: 0.8 %大同: 0.8 %大连: 0.4 %大连: 0.4 %天津: 2.1 %天津: 2.1 %太原: 0.4 %太原: 0.4 %宜昌: 0.8 %宜昌: 0.8 %宣城: 0.4 %宣城: 0.4 %布雷登顿: 1.2 %布雷登顿: 1.2 %常德: 0.8 %常德: 0.8 %张家口: 1.7 %张家口: 1.7 %成都: 0.4 %成都: 0.4 %昆明: 0.4 %昆明: 0.4 %晋城: 0.4 %晋城: 0.4 %杭州: 0.4 %杭州: 0.4 %沈阳: 0.4 %沈阳: 0.4 %济南: 0.4 %济南: 0.4 %海口: 2.9 %海口: 2.9 %淄博: 0.8 %淄博: 0.8 %漯河: 2.9 %漯河: 2.9 %石家庄: 0.4 %石家庄: 0.4 %福州: 2.5 %福州: 2.5 %穆列塔: 2.5 %穆列塔: 2.5 %芒廷维尤: 12.4 %芒廷维尤: 12.4 %芝加哥: 3.7 %芝加哥: 3.7 %衡阳: 0.4 %衡阳: 0.4 %西宁: 2.1 %西宁: 2.1 %西安: 0.4 %西安: 0.4 %贵阳: 1.2 %贵阳: 1.2 %运城: 1.2 %运城: 1.2 %遵义: 0.4 %遵义: 0.4 %郑州: 1.2 %郑州: 1.2 %重庆: 0.8 %重庆: 0.8 %长沙: 1.2 %长沙: 1.2 %其他其他China三亚上海东莞保定加利福尼亚州北京十堰南京南宁台州大同大连天津太原宜昌宣城布雷登顿常德张家口成都昆明晋城杭州沈阳济南海口淄博漯河石家庄福州穆列塔芒廷维尤芝加哥衡阳西宁西安贵阳运城遵义郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (171) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return