Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Anna, WANG Hui, LIU Qiangnan, LI Taiping. DISTRIBUTION CHARACTERISTICS AND RISK ASSESSMENT OF SOIL POLLUTANTS IN AN EXPLOSION SITE OF A CHEMICAL PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 189-198. doi: 10.13205/j.hjgc.202211027
Citation: ZHANG Shuang-shuang, LI Zhi-hua, BEI Yuan, YANG Cheng-jian. SHUTTLE CHARACTERISTICS OF LNA AND HNA BACTERIA DURING DENITRIFICATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 78-84. doi: 10.13205/j.hjgc.202011013

SHUTTLE CHARACTERISTICS OF LNA AND HNA BACTERIA DURING DENITRIFICATION PROCESS

doi: 10.13205/j.hjgc.202011013
  • Received Date: 2020-02-13
    Available Online: 2021-04-23
  • Publish Date: 2021-04-23
  • Low nucleic acid (LNA) and high nucleic acid (HNA) bacteria show different characteristics under different environmental conditions, and the effect of denitrification process on bacteria is still unclear. The variations of free-swimming LNA and HNA bacteria under different denitrification conditions and microbial community were thus investigated in this study, it was found that free-swimming bacteria increased rapidly during the denitrification process, and greater the denitrification rate resulted in a higher increase of free-swimming bacteria. It was evidenced that LNA bacteria moved faster than HNA bacteria at the beginning of the denitrification reaction. HNA bacteria showed a rapid increase, either the denitrification reached a certain level, or the floc structure loose or break, indicating that LNA bacteria was mainly on the surface of flocs and functioned as glue, or filling materials of the pores of flocs. HNA bacteria functioned as a backbone of flocs. When starch was used as the carbon source for denitrification, free-swimming bacteria were reduced due to the bridge-capture of starch. However the denitrification of sodium acetate had a more significant effect on free-swimming bacteria than the bridge-capture of starch. In addition, HNA bacteria had higher abundance and diversity than LNA bacteria, and was found out as the main functional bacteria. LNA bacteria can respond faster to denitrification and be used as a signal for denitrification initiation.
  • VILA C M, GASOL J M, SHARMA S, et al. Community analysis of high-and low-nucleic acid-containing bacteria in NW Mediterranean coastal waters using 16S rDNA pyrosequencing[J]. Environmental Microbiology, 2012, 14(6):1390-1402.
    WANG Y, HAMMES F, BOON N, et al. Isolation and characterization of low nucleic acid (LNA)-conetnt bacteria[J]. The ISME Journal, 2009, 3(8):889-902.
    SONG Y H, WANG Y F, MAO G N, et al. Impact of planktonic low nucleic acid-content bacteria to bacterial community structure and associated ecological functions in a shallow lake[J]. Science of the Total Environment, 2019, 658:868-878.
    LACOSTE É, PIOT A, ARCHAMBAULT P, et al. Bioturbation activity of three macrofaunal species and the presence of meiofauna affect the abundance and composition of benthic bacterial communities[J]. Marine Environmental Research, 2018, 136:62-70.
    LONGNECKER K, SHERR B, SHERR E. Variation in cell-specific rates of leucine and thymidine incorporation by marine bacteria with high and with low nucleic acid content of the Oregon coast[J]. Aquatic Microbial Ecology, 2006, 43(2):113-125.
    RAMSEIER M K, GUNTEN U, FREIHOFER P, et al. Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate (Ⅵ), and permanganate[J]. Water Research, 2011, 45(3):1490-1500.
    MAO G N, SONG Y H, BARTLAM M, et al. Long-term effects of residual chlorine on Pseudomonas aeruginosa in simulated drinking water fed with low AOC medium[J]. Frontiers in Microbiology, 2018, 9:879.
    PAN Z L, ZHOU J, LIN Z Y, et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process[J]. Bioresource Technology, 2020, 301:122726.
    HOLMAN J, WAREHAM D. COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process[J]. Biochemical Engineering Journal, 2005, 22(2):125-133.
    FOGLAR L, BRIŠKI F. Wastewater denitrification process-the influence of methanol and kinetic analysis[J]. Process Biochemistry, 2003, 39(1):95-103.
    CARLA C, ANNALISA O H, IBRAHIM E S, et al. Implication of using different carbon sources for denitrification in wastewater treatments[J]. Water Environment Research, 2009, 81(8):788-799.
    郑志佳, 吴迪, 张晶晶,等. 两级后置纯膜MBBR的反硝化性能研究[J]. 环境工程, 2019, 37(9):68-73.
    XU Z S, DAI X H, CHAI X L. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes[J]. Science of the Total Environment, 2018, 634:195-204.
    FEDERATION W E, Association A P H. Standard Methods for the Examination of Water and Wastewater[M]. American Public Health Association (APHA):Washington, DC, 2005.
    ZOU J T, PAN J A, WU S Y, et al. Rapid control of activated sludge bulking and simultaneous acceleration of aerobic granulation by adding intact aerobic granular sludge[J]. Science of the Total Environment, 2019, 674:105-113.
    TANG P, YU D S, CHEN G H, et al. Novel aerobic granular sludge culture strategy:using granular sludge Anammox process effluent as a biocatalyst[J]. Bioresource Technology, 2019, 294:122156.
    郭耀, 李志华, 杨成建, 等. 活性污泥物理结构对呼吸过程的影响[J]. 环境科学, 2019,40(6):323-330.
    YANG Q X, ZHAO H L, DU B B. Bacteria and bacteriophage communities in bulking and non-bulking activated sludge in full-scale municipal wastewater treatment systems[J]. Biochemical Engineering Journal, 2017, 119:101-111.
    FUKUSHIMA T, WHANG L M, CHEN P C, et al. Linking TFT-LCD wastewater treatment performance to microbial population abundance of Hyphomicrobium and Thiobacillus spp[J]. Bioresource Technology, 2013, 141:131-137.
    GUO J, CHENG J P, LI B B, et al. Performance and microbial community in the biocathode of microbial fuel cells under different dissolved oxygen concentrations[J]. Journal of Electroanalytical Chemistry, 2019, 833:433-440.
    WANG J, LI Q, QI R, et al. Sludge bulking impact on relevant bacterial populations in a full-scale municipal wastewater treatment plant[J]. Process Biochemistry, 2014, 49(12):2258-2265.
    WANG D P, LI T, HUANG K L, et al. Roles and correlations of functional bacteria and genes in the start-up of simultaneous anammox and denitrification system for enhanced nitrogen removal[J]. Science of the Total Environment, 2019, 655:1355-1363.
    MARQUES R, RIBERA-GUARDIA A, SANTOS J, et al. Denitrifying capabilities of Tetrasphaera and their contribution towards nitrous oxide production in enhanced biological phosphorus removal processes[J]. Water Research, 2018, 137:262-272.
    ZHANG X X, LI A, SZEWZYK U, et al. Improvement of biological nitrogen removal with nitrate-dependent Fe (Ⅱ) oxidation bacterium Aquabacterium parvum B6 in an up-flow bioreactor for wastewater treatment[J]. Bioresource Technology, 2016, 219:624-631.
    CHEN C M, MING J, YOZA B A, et al. Characterization of aerobic granular sludge used for the treatment of petroleum wastewater[J]. Bioresource Technology, 2019, 271:353-359.
    GU Y Q, LI T T, LI H Q. Biofilm formation monitored by confocal laser scanning microscopy during startup of MBBR operated under different intermittent aeration modes[J]. Process Biochemistry, 2018, 74:132-140.
    MULLA S I, HU A Y, WANG Y W, et al. Degradation of triclocarban by a triclosan-degrading Sphingomonas sp. strain YL-JM2C[J]. Chemosphere, 2016, 144:292-296.
    SONG G Q, YU Y, LIU T, et al. Performance of microaeration hydrolytic acidification process in the pretreatment of 2-butenal manufacture wastewater[J]. Journal of Hazardous Materials, 2019, 369:465-473.
    MA S J, MA H J, HU H D, et al. Effect of mixing intensity on hydrolysis and acidification of sewage sludge in two-stage anaerobic digestion:characteristics of dissolved organic matter and the key microorganisms[J]. Water Research, 2019, 148:359-367.
    ZHANG L, LEHMANN K, TOTSCHE K U, et al. Selective successional transport of bacterial populations from rooted agricultural topsoil to deeper layers upon extreme precipitation events[J]. Soil Biology and Biochemistry, 2018, 124:168-178.
  • Relative Articles

    [1]DAN Aojiang, YAO Junqin, JIA Yangyang, ZHAO Xinwei, CHEN Yinguang. EFFECT OF ADDING METHANOL ON MICROBIAL COMMUNITIES AND ARGs IN A WASTEWATER TREATMENT PLANT OF AN INDUSTRIAL PARK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 124-131. doi: 10.13205/j.hjgc.202409012
    [2]FU Jiachen, WANG Jing, ZHAO Yiying, WEN Huiyan, AN Xiao, CHEN Yucheng, ZHOU Zhongbo. NITROGEN REMOVAL PERFORMANCE BY ALGAL-DRIVEN AEROBIC METHANE OXIDATION COUPLED WITH DENITRIFICATION IN A PHOTO-BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 18-25. doi: 10.13205/j.hjgc.202308003
    [3]ZHANG Chi, SHA Hongjü, WANG Chao, LÜ Ze, HU Xiaomin. MICROBIAL COMMUNITY STRUCTURE ENHANCEMENT BY ELECTRIC FIELD AT ROOM TEMPERATURE AND HIGH NITROGEN LOAD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 39-44. doi: 10.13205/j.hjgc.202305006
    [4]MEN Yan, LIU Lingjie, ZHU Yaxin, BI Yanmeng, MENG Fansheng, YU Jingjie, WANG Shaopo. EFFECT OF ORGANIC MATTER CONCENTRATION VARIATION ON NITROGEN REMOVAL PERFORMANCE AND BACTERIA COMMUNITY STRUCTURE IN A HYBRID SBR ANAMMOX SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 83-90. doi: 10.13205/j.hjgc.202308011
    [5]YAN Duosen, YANG Wen, LI Shanshan, JIAO Yan, ZHANG Guodong, CHEN Qinghua, LI Yun. EFFECT OF SULFAMETHOXAZOLE ON NITROGEN REMOVAL AND MICROBIAL COMMUNITY OF SEQUENCING BATCH BIOREACTORS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 15-23,70. doi: 10.13205/j.hjgc.202210003
    [6]WANG Yan, LI Ji, ZHI Yao, ZHOU Yu, ZHENG Kai-kai, WANG Xiao-fei. DENITRIFICATION ENHANCEMENT EFFECT AND MICROBIAL FLORA ANALYSIS OF A NEW BIOMASS CARBON SOURCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 63-68,117. doi: 10.13205/j.hjgc.202209008
    [7]LUO Xiao-nan, YANG Yi-qing, ZHANG Nan, MENG Fan-gang. PERFORMANCE OF NITROGEN REMOVAL AND MICROBIAL INTERACTION IN A TWO-STAGE DYNAMIC MEMBRANE BIOREACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 108-115. doi: 10.13205/j.hjgc.202107013
    [8]YIN Hao-shuai, HUANG Kai, WANG Qing-qing, LI Shi-feng. ANALYSIS ON CHANGE OF MICROBIAL COMMUNITY IN AAO BIOCHEMICAL SYSTEM OF A SEWAGE TREATMENT PLANT UNDER HIGH SALINITY ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 68-74. doi: 10.13205/j.hjgc.202103010
    [9]FU Kun-ming, FU Si-bo, LIU Fan-qi, QIU Fu-guo, CAO Xiu-qin. EFFECT OF DIFFERENT CARBON SOURCES ON N2O RELEASE IN DENITRIFICATION PROCESS OF A SBR REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 56-62. doi: 10.13205/j.hjgc.202109009
    [10]HAN Yu-lin, SHI Ling-dong, ZHAO He-ping. RESEARCH ON PROMOTION OF SELENIUM REDUCTION BY DENITRIFYING BACTERIA IN WASTEWATER AND ITS APPLICATION EXPLORATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 62-68,88. doi: 10.13205/j.hjgc.202111007
    [11]ZHAO Min-juan, SHEN Yuan-yuan, GAO Tian-peng, YAN Jia-cong, YANG Ji-huan. EFFECT OF BROMINATED FLAME RETARDANT ON BIOLOGICAL NITROGEN AND PHOSPHORUS REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 49-53,111. doi: 10.13205/j.hjgc.202012009
    [12]ZHAO Wan-qing, LI Bo-lin, WANG Wei, LI Ye, WANG Heng, WANG Yue, LIANG Ya-nan. PERFORMANCE OF A GRANULAR-FLOCCULENT SLUDGE COUPLING SINGLE-STAGE AUTOTROPHIC NITROGEN REMOVAL SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 43-47,199. doi: 10.13205/j.hjgc.202009007
    [13]CHEN Jin-yuan, LIU Xue-wen, LV Ju-feng, LV Bo-sheng, WEI Xiu-zhen. EFFECT OF BIOCHAR ON COMPOSITION OF SMP AND EPS IN ACTIVATED SLUDGE AND NITROGEN AND PHOSPHORUS REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 133-138,207. doi: 10.13205/j.hjgc.202009022
    [14]ZHOU Yuan, ZHI Li-ling, ZHENG Kai-kai, WANG Yan, LI Ji. INFLUENCING FACTORS AND OPTIMIZATION ANALYSIS OF DENITRIFICATION RATE IN URBAN WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 100-108. doi: 10.13205/j.hjgc.202007016
    [15]MA Ye-shu, YAO Jun-qin, WANG Xi-yuan, LUO Yuan-shuang, ZHANG Meng, CHEN Yin-guang. MICROBIAL COMMUNITY STRUCTURE OF ACTIVATED SLUDGE IN OXIDATION DITCH PROCESS IN ARID AND COLD REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 58-62,50. doi: 10.13205/j.hjgc.202003010
    [18]Zhang Weizheng Chen Yongchun Liu Bingjun Li Zhenzhen Tao Xianchao Shi Xianyang, . MATHEMATICAL SIMULATION OF SIMULTANEOUS DENITRIFICATION AND METHANOGENESIS WITH SODIUM ACETATE AS THE ELECTRON DONOR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 63-69. doi: 10.13205/j.hjgc.201504014
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.7 %FULLTEXT: 12.7 %META: 85.2 %META: 85.2 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.9 %其他: 17.9 %China: 1.7 %China: 1.7 %Switzerland: 1.3 %Switzerland: 1.3 %上海: 0.9 %上海: 0.9 %东莞: 0.4 %东莞: 0.4 %临汾: 0.4 %临汾: 0.4 %北京: 2.2 %北京: 2.2 %十堰: 0.4 %十堰: 0.4 %南京: 0.4 %南京: 0.4 %厦门: 0.4 %厦门: 0.4 %台州: 1.3 %台州: 1.3 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %天津: 2.6 %天津: 2.6 %太原: 0.9 %太原: 0.9 %宁波: 0.4 %宁波: 0.4 %安康: 0.9 %安康: 0.9 %宜春: 0.4 %宜春: 0.4 %常德: 0.4 %常德: 0.4 %广州: 1.7 %广州: 1.7 %张家口: 0.9 %张家口: 0.9 %成都: 1.3 %成都: 1.3 %拉贾斯坦邦: 0.4 %拉贾斯坦邦: 0.4 %无锡: 0.4 %无锡: 0.4 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.4 %朝阳: 0.4 %本溪: 0.4 %本溪: 0.4 %桂林: 2.2 %桂林: 2.2 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %法兰克福: 1.3 %法兰克福: 1.3 %济南: 0.9 %济南: 0.9 %济源: 0.9 %济源: 0.9 %湖州: 0.4 %湖州: 0.4 %滨州: 0.4 %滨州: 0.4 %漯河: 1.7 %漯河: 1.7 %珠海: 0.4 %珠海: 0.4 %石家庄: 0.4 %石家庄: 0.4 %秦皇岛: 0.4 %秦皇岛: 0.4 %芒廷维尤: 28.8 %芒廷维尤: 28.8 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.9 %苏州: 0.9 %西宁: 10.0 %西宁: 10.0 %西安: 2.2 %西安: 2.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 3.5 %运城: 3.5 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.3 %郑州: 1.3 %重庆: 0.4 %重庆: 0.4 %长治: 0.4 %长治: 0.4 %其他ChinaSwitzerland上海东莞临汾北京十堰南京厦门台州合肥哈尔滨天津太原宁波安康宜春常德广州张家口成都拉贾斯坦邦无锡晋城朝阳本溪桂林武汉沈阳法兰克福济南济源湖州滨州漯河珠海石家庄秦皇岛芒廷维尤芝加哥苏州西宁西安贵阳运城遵义邯郸郑州重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (194) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return