Core Chinese Journal
Source Journal of CSCD(Core Version)
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 38 Issue 11
Apr.  2021
Turn off MathJax
Article Contents
XU Yi-wen, JIANG Jian-guo, MENG Yuan, YAN Wei-wei. EFFECTS OF PRETREATMENT ON ANAEROBIC CO-DIGESTION OF GARDEN WASTE AND OTHER SUBSTRATES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 168-174. doi: 10.13205/j.hjgc.202011028
Citation: XU Yi-wen, JIANG Jian-guo, MENG Yuan, YAN Wei-wei. EFFECTS OF PRETREATMENT ON ANAEROBIC CO-DIGESTION OF GARDEN WASTE AND OTHER SUBSTRATES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 168-174. doi: 10.13205/j.hjgc.202011028

EFFECTS OF PRETREATMENT ON ANAEROBIC CO-DIGESTION OF GARDEN WASTE AND OTHER SUBSTRATES

doi: 10.13205/j.hjgc.202011028
  • Received Date: 2019-10-15
    Available Online: 2021-04-23
  • Publish Date: 2021-04-23
  • Ultrasound, microwave and alkali-thermal pretreatment were applied for enhancing biogas production by anaerobic co-digestion of garden waste, kitchen waste and fruit and vegetable waste. The experiment without pretreatment served as the control. The results showed that pH values of the four experiments rapidly decreased to 7.24~7.45 within 2 days and then increased to 7.7~8.0 at the end of reactions, indicating that anaerobic digestion systems were relatively stable. The concentrations of VFA reached the maximum within 2~4 days, of which acetic acid and propionic acid were the main components, accounting for more than 70%. After 13 days, VFA concentrations decreased to below 500 mg/L, and mainly acetic acid remained. There were some fluctuations of TAN concentrations during the first 4 days, which then gradually increased to 2190~2410 mg/L at the end. While the concentrations of FAN firstly decreased, then increased and stabilized to 144~209 mg/L after 13 days. The proportion of methane in biogas all exceeded 50% after the 2nd day and reached the maximum value of 61.4%~63.8% on the 11th~12th day. According to simulation results of the modified Gomperts model, pretreatments could shorten the adaption period and enhance gas production at early stage. Ultrasonic pretreatment and alkali-thermal pretreatment could significantly increase the methane yield, from 396 mL CH4/g VS to 601 mL CH4/g VS, 536 mL CH4/g VS, respectively, while microwave pretreatment slightly decreased the methane yield.
  • loading
  • SHI Y, GE Y, CHANG J, et al. Garden waste biomass for renewable and sustainable energy production in China:Potential, challenges and development[J]. Renewable & Sustainable Energy Reviews, 2013,22:432-437.
    Brown S. Putting the landfill energy myth to rest[J]. Biocycle, 2010,51(5):23-35.
    ABREU A A, TAVARES F, ALVES M M, et al. Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process[J]. Bioresource Technology, 2019,278:180-186.
    CARDONA L, LEVRARD C, GUENNE A, et al. Co-digestion of wastewater sludge:choosing the optimal blend[J]. Waste Management, 2019,87:772-781.
    孙健, 万顺刚, 罗文邃. 堆肥预处理对园林废弃物厌氧消化的影响[J]. 环境工程, 2014,32(3):100-105.
    YANG L C, XU F Q, GE X M, et al. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass[J]. Renewable & Sustainable Energy Reviews, 2015,44:824-834.
    BROWN D, SHI J, LI Y. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production[J]. Bioresource Technology, 2012,124:379-386.
    GE X M, XU F Q, LI Y B. Solid-state anaerobic digestion of lignocellulosic biomass:recent progress and perspectives[J]. Bioresource Technology, 2016,205:239-249.
    BROWN D, LI Y B. Solid state anaerobic co-digestion of yard waste and food waste for biogas production[J]. Bioresource Technology, 2013,127:275-280.
    KANG X H, SUN Y M, LI L H, et al. Improving methane production from anaerobic digestion of Pennisetum Hybrid by alkaline pretreatment[J]. Bioresource Technology, 2018,255:205-212.
    PENG J J, ABOMOHRA A E, ELSAYED M, et al. Compositional changes of rice straw fibers after pretreatment with diluted acetic acid:towards enhanced biomethane production[J]. Journal of Cleaner Production, 2019,230:775-782.
    ZIELIŃSKI M, KISIELEWSKA M, DUDEK M, et al. Comparison of microwave thermohydrolysis and liquid hot water pretreatment of energy crop Sida hermaphrodita for enhanced methane production[J]. Biomass & Bioenergy, 2019,128:105324.
    DONG C Y, CHEN J, GUAN R L, et al. Dual-frequency ultrasound combined with alkali pretreatment of corn stalk for enhanced biogas production[J]. Renewable Energy, 2018,127:444-451.
    YUAN H R, SONG X C, GUAN R L, et al. Effect of low severity hydrothermal pretreatment on anaerobic digestion performance of corn stover[J]. Bioresource Technology, 2019,294:122238.
    MONLAU F, AEMIG Q, BARAKAT A, et al. Application of optimized alkaline pretreatment for enhancing the anaerobic digestion of different sunflower stalks varieties[J]. Environmental Technology, 2013,34(13/14SI):2155-2162.
    CHEN Y, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process:a review[J]. Bioresource Technology, 2008,99(10):4044-4064.
    SILES J A, BREKELMANS J, MARTIN M A, et al. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion[J]. Bioresource Technology, 2010,101(23):9040-9048.
    REN N Q, LIU M, WANG A J, et al. Organic Acids Conversion in Methanogenic-phase Reactor of the Two-phase Anaerobic Process[J]. Chinese Journal of Environmental Science, 2003,24(4):89-93.
    WANG Y Y, ZHANG Y L, WANG J B, et al. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria[J]. Biomass & Bioenergy, 2009,33(5):848-853.
    BANKS C J, ZHANG Y, JIANG Y, et al. Trace element requirements for stable food waste digestion at elevated ammonia concentrations[J]. Bioresource Technology, 2012,104:127-135.
    SCHNURER A, NORDBERG A. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature[J]. Water Science and Technology, 2008,57(5):735-740.
    何仕均, 王建龙, 赵璇. 氨氮对厌氧颗粒污泥产甲烷活性的影响[J]. 清华大学学报(自然科学版), 2005,45(9):1294-1296.
    KAYHANIAN M. Performance of a high-solids anaerobic-digestion process under various ammonia concentrations[J]. Journal of Chemical Technology and Biotechnology, 1994,59(4):349-352.
    RAJAGOPAL R, MASSE D I, SINGH G. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013,143:632-641.
    KRAKAT N, DEMIREL B, ANJUM R, et al. Methods of ammonia removal in anaerobic digestion:a review[J]. Water Science and Technology, 2017,76(8):1925-1938.
    LAUTERBOECK B, ORTNER M, HAIDER R, et al. Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor[J]. Water Research, 2012,46(15):4861-4869.
    ALAGÖZ B A, YENIGÜN O, ERDINCLER A. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes:comparison with microwave pre-treatment[J]. Ultrasonics Sonochemistry, 2018,40(Part B):193-200.
    WANG H, WANG H T, LU W J, et al. Digestibility improvement of sorted waste with alkaline hydrothermal pretreatment[J]. Tsinghua Science and Technology, 2009,14(3):378-382.
    PAUDEL S R, BANJARA S P, CHOI O K, et al. Pretreatment of agricultural biomass for anaerobic digestion:current state and challenges[J]. Bioresource Technology, 2017,245(Part A):1194-1205.
    KWIATKOWSKA B, BENNETT J, AKUNNA J, et al. Stimulation of bioprocesses by ultrasound[J]. Biotechnology Advances, 2011,29(6):768-780.
    HU Z H, WEN Z Y. Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment[J]. Biochemical Engineering Journal, 2008,38(3):369-378.
    MARIN J, KENNEDY K J, ESKICIOGLU C. Effect of microwave irradiation on anaerobic degradability of model kitchen waste[J]. Waste Management, 2010,30(10):1772-1779.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (104) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return