Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
TANG Xu-long, XING Xiu-jun. EXPERIMENTAL STUDY ON PREPARATION OF SLAG FIBER FROM BLAST FURNACE SLAG AND FLY ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 180-186. doi: 10.13205/j.hjgc.202011030
Citation: TANG Xu-long, XING Xiu-jun. EXPERIMENTAL STUDY ON PREPARATION OF SLAG FIBER FROM BLAST FURNACE SLAG AND FLY ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 180-186. doi: 10.13205/j.hjgc.202011030

EXPERIMENTAL STUDY ON PREPARATION OF SLAG FIBER FROM BLAST FURNACE SLAG AND FLY ASH

doi: 10.13205/j.hjgc.202011030
  • Received Date: 2020-04-20
    Available Online: 2021-04-23
  • Publish Date: 2021-04-23
  • In this paper, On the basis of calculating the liquidus temperatures and viscosities of the slag system CaO-SiO2-Al2O3-MgO-FeO-Na2O-K2O, slag fiber was successfully prepared from blast furnace slag and coal ash by the high-speed air-injection method. The effect of factors such as mass ratio of blast furnace slag to coal ash (slag/coal), air-injection temperature and pressure was investigated in detail. While the air-injection experiment was carried out at 1450 ℃, the slag/coal was increased from 20% to 60%, the diameter of the slag fibers was subsequently decreased from 18.08 μm to 6.03 μm. the slag/coal was increased from 60% to 80%, the average fiber diameter was between 5 and 7 μm and the single fiber average tensile strength was about 1085 MPa. However, the glass beads, otherwise fibers, have been prepared if further increased the slag/coal. Hence, high quality mineral wool fibers could be obtained by controlling the addition ratio of the blast furnace slag between 60% and 80%, and the air-injection temperature between 1400 and 1500 ℃.
  • 杨铧.冲天炉矿棉面临的挑战及其对策探讨[J].新型建筑材料,1993(9):10-13.
    杨铧.高效利用高炉熔渣显热的一步法矿棉生产技术[J].新型建筑材料,2003(3):54-55.
    杨铧.用高炉渣热装熔炼矿物棉可能性探讨[J].新型建筑材料,1995:26-29.
    戴晓天,齐渊洪,张春霞, 等.高炉渣急冷干式粒化处理工艺分析[J].钢铁研究学报,2007,19(5):14-19.
    杨铧.高炉熔渣显热的高效利用:新一步法矿棉技术获得成功[J].节能与环保,2003(2):34-35.
    杨铧.高炉熔渣显热的利用:一步法矿棉技术[J].保温材料与节能技术,2002(6):17-19.
    用酸性岩石-石英闪长玢岩在冲天炉中溶炼制取岩棉的研究报告[J]. 保温材料与节能技术, 1990(6):2-9.
    杜培培,龙跃,李智慧, 等.熔渣酸度系数对矿渣棉性能的影响[J].过程工程学报,2015,15(3):518-523.
    张玉柱,刘卫星,张伟, 等.改性高炉渣作为矿渣棉原料的实验研究[J].功能材料,2012,43(增刊1):59-62,66.
    孙鹤群,李军,苍大强, 等.利用液态高炉渣制备矿渣棉的调质研究[J].冶金能源,2016,35(2):40-45.
    姚建新,边妙莲.粉煤灰对矿渣棉用调质高炉渣析晶性能的影响[J].科学技术与工程,2019,19(36):388-393.
    李军,张玲玲,赵贵州, 等.高炉熔渣调质制备高酸度系数矿物棉纤维的研究[J].冶金能源,2019,38(3):41-45.
    张良进,龙跃,李智慧, 等.喷吹工艺参数对矿渣棉质量的影响[J].材料与冶金学报,2016,15(1):20-24

    ,32.
    唐续龙,张梅,郭敏,等. 基于熔渣结构的多元渣系黏度模型[J]. 工程科学学报, 2020,42(9):1149-1156.
    彭苏宁, 刘庆云. 粉煤灰纤维棉及其制品的开发, 粉煤灰综合利用, 1999,13(1):44-47.
    MILITKY J, KOVACIC V. Ultimate mechanical properties of basalt filaments[J]. Text Research Journal, 1996, 66:225-229.
  • Relative Articles

    [1]YAN Han, WANG Shengnan, CHEN Zhuo, DAO Guohua, SHEN Moyu, GUO Hongfa, YANG Jiaojiao, ZHU Yu, PAN Min, HU Hongying. CHARACTERISTICS OF ORGANIC POLLUTANTS (COD) AND THEIR SOURCE IN DIANCHI LAKE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 113-119. doi: 10.13205/j.hjgc.202407012
    [2]YANG Yanmei, XIA Tong, ZHANG Yun, AO Liang. SIMULATION ON TRANSPORT OF GROUNDWATER POLLUTANTS AFTER CLOSURE OF A LANDFILL IN CHONGQING BASED ON VISUAL MODFLOW[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 40-47. doi: 10.13205/j.hjgc.202404005
    [3]HU Xiaobing, LI Jingjing, SHEN Yijun, CHANG Jing, LIU Haoyu, SU Junwen, ZHONG Meiying. EFFECT OF INFLUENT COD CONCENTRATION ON MOTION VELOCITY OF MICROFAUNA IN ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 109-115. doi: 10.13205/j.hjgc.202307015
    [4]LI Qiuhua, WANG Qunhui. ADVANCED TREATMENT OF SOLID WASTE LANDFILL LEACHATE BY A COMBINED PROCESS OF Fe/C MICROELECTROLYSIS-FENTON OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 18-23. doi: 10.13205/j.hjgc.202203004
    [5]FU Li-ya, LI Min, ZHOU Jian, WU Chang-yong, ZHU Chen, YU Yin, SONG Yu-dong. MICRO FLOCCULATING SAND FILTER-CATALYTIC OZONATION ENHANCED COD REMOVAL FROM BIO-TREATED PETROCHEMICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 159-165. doi: 10.13205/j.hjgc.202111021
    [6]LIU Si-yao, ZHAO Rui, YU Yang, TIAN Xiao-gang, LUO Jin-qi, ZHANG Shu-jun. DIVISION OF WATER CONTROL-UNIT IN SMALL WATERSHED BASED ON MULTI-CRITERIA DECISION MAKING: A CASE OF NANHE BASIN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 78-85. doi: 10.13205/j.hjgc.202012014
    [7]LI Ya-feng, ZHANG Ce, SHAN Lian-bin, ZHANG Lei. EXPERIMENTAL STUDY ON TREATMENT OF PHENOL WASTEWATER BY THREE-DIMENSIONAL ELECTRODE FENTON METHOD[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 1-5. doi: 10.13205/j.hjgc.202009001
    [13]Yang Dong, Wang Shaopo, Yu Jingjie, Sun Liping, Du Jinshan. ANALYSIS OF CARBON CONVERSION PATHWAY IN MODIFIED OXIDATION DITCH BALL/MEMBRANE INTEGRATED PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 11-15. doi: 10.13205/j.hjgc.201502003
  • Cited by

    Periodical cited type(10)

    1. 马勤,毛雅芬. 城市污水处理技术的进展与未来挑战:以持续减排为目标. 黑龙江环境通报. 2024(03): 148-150 .
    2. 甘海娇. 组合人工湿地技术在污水处理厂尾水深度净化中的应用. 化工设计通讯. 2024(06): 144-146+150 .
    3. 江志健. 市政道路桥梁污水处理工艺及其回用技术分析. 水上安全. 2024(17): 78-80 .
    4. 罗秦格,李航哲,李凯,文刚,黄廷林. 氯化锂共混改性对PVDF超滤膜耐氯性的影响. 环境工程. 2024(09): 148-155 . 本站查看
    5. 郝燕,孙广东,代攀,张瑜,李彦,邹浩然,肖康. 阵列平板膜污染分析与清洗应用. 膜科学与技术. 2024(06): 122-131 .
    6. 黄青,杨平,杨忠启,马潇然,周家中,吴迪. MBBR和MBR工艺的污水处理效果与碳排放分析. 中国给水排水. 2023(16): 99-104 .
    7. 凌国峰,克立方. 膜生物反应技术在环境工程污水处理中的实践探究. 产业创新研究. 2023(18): 127-129 .
    8. 马志刚,芦秀青,王静,沈思彤,周忠波. 不同无机碳水平下MBR运行性能与膜污染行为研究. 环境科技. 2023(06): 8-13 .
    9. 朱万进. MBR膜技术用于污水处理的研究分析. 山西化工. 2023(12): 191-194 .
    10. Yisheng Shao,Yijian Xu. Challenges and countermeasures of urban water systems against climate change:a perspective from China. Frontiers of Environmental Science & Engineering. 2023(12): 190-196 .

    Other cited types(13)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.5 %FULLTEXT: 15.5 %META: 82.2 %META: 82.2 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.6 %其他: 11.6 %China: 0.8 %China: 0.8 %上海: 0.8 %上海: 0.8 %临汾: 1.6 %临汾: 1.6 %保定: 0.8 %保定: 0.8 %北京: 6.2 %北京: 6.2 %南京: 3.9 %南京: 3.9 %南通: 0.8 %南通: 0.8 %台州: 0.8 %台州: 0.8 %大同: 0.8 %大同: 0.8 %天津: 1.6 %天津: 1.6 %宣城: 0.8 %宣城: 0.8 %常德: 0.8 %常德: 0.8 %张家口: 1.6 %张家口: 1.6 %成都: 1.6 %成都: 1.6 %拉贾斯坦邦: 0.8 %拉贾斯坦邦: 0.8 %晋城: 1.6 %晋城: 1.6 %朝阳: 0.8 %朝阳: 0.8 %济源: 1.6 %济源: 1.6 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 41.9 %芒廷维尤: 41.9 %苏州: 0.8 %苏州: 0.8 %西宁: 6.2 %西宁: 6.2 %西安: 0.8 %西安: 0.8 %贵阳: 0.8 %贵阳: 0.8 %运城: 5.4 %运城: 5.4 %遵义: 0.8 %遵义: 0.8 %邢台: 0.8 %邢台: 0.8 %邯郸: 0.8 %邯郸: 0.8 %郑州: 1.6 %郑州: 1.6 %长治: 0.8 %长治: 0.8 %其他China上海临汾保定北京南京南通台州大同天津宣城常德张家口成都拉贾斯坦邦晋城朝阳济源石家庄芒廷维尤苏州西宁西安贵阳运城遵义邢台邯郸郑州长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (210) PDF downloads(6) Cited by(23)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return