Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
TANG Xu-long, XING Xiu-jun. EXPERIMENTAL STUDY ON PREPARATION OF SLAG FIBER FROM BLAST FURNACE SLAG AND FLY ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 180-186. doi: 10.13205/j.hjgc.202011030
Citation: TANG Xu-long, XING Xiu-jun. EXPERIMENTAL STUDY ON PREPARATION OF SLAG FIBER FROM BLAST FURNACE SLAG AND FLY ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 180-186. doi: 10.13205/j.hjgc.202011030

EXPERIMENTAL STUDY ON PREPARATION OF SLAG FIBER FROM BLAST FURNACE SLAG AND FLY ASH

doi: 10.13205/j.hjgc.202011030
  • Received Date: 2020-04-20
    Available Online: 2021-04-23
  • Publish Date: 2021-04-23
  • In this paper, On the basis of calculating the liquidus temperatures and viscosities of the slag system CaO-SiO2-Al2O3-MgO-FeO-Na2O-K2O, slag fiber was successfully prepared from blast furnace slag and coal ash by the high-speed air-injection method. The effect of factors such as mass ratio of blast furnace slag to coal ash (slag/coal), air-injection temperature and pressure was investigated in detail. While the air-injection experiment was carried out at 1450 ℃, the slag/coal was increased from 20% to 60%, the diameter of the slag fibers was subsequently decreased from 18.08 μm to 6.03 μm. the slag/coal was increased from 60% to 80%, the average fiber diameter was between 5 and 7 μm and the single fiber average tensile strength was about 1085 MPa. However, the glass beads, otherwise fibers, have been prepared if further increased the slag/coal. Hence, high quality mineral wool fibers could be obtained by controlling the addition ratio of the blast furnace slag between 60% and 80%, and the air-injection temperature between 1400 and 1500 ℃.
  • 杨铧.冲天炉矿棉面临的挑战及其对策探讨[J].新型建筑材料,1993(9):10-13.
    杨铧.高效利用高炉熔渣显热的一步法矿棉生产技术[J].新型建筑材料,2003(3):54-55.
    杨铧.用高炉渣热装熔炼矿物棉可能性探讨[J].新型建筑材料,1995:26-29.
    戴晓天,齐渊洪,张春霞, 等.高炉渣急冷干式粒化处理工艺分析[J].钢铁研究学报,2007,19(5):14-19.
    杨铧.高炉熔渣显热的高效利用:新一步法矿棉技术获得成功[J].节能与环保,2003(2):34-35.
    杨铧.高炉熔渣显热的利用:一步法矿棉技术[J].保温材料与节能技术,2002(6):17-19.
    用酸性岩石-石英闪长玢岩在冲天炉中溶炼制取岩棉的研究报告[J]. 保温材料与节能技术, 1990(6):2-9.
    杜培培,龙跃,李智慧, 等.熔渣酸度系数对矿渣棉性能的影响[J].过程工程学报,2015,15(3):518-523.
    张玉柱,刘卫星,张伟, 等.改性高炉渣作为矿渣棉原料的实验研究[J].功能材料,2012,43(增刊1):59-62,66.
    孙鹤群,李军,苍大强, 等.利用液态高炉渣制备矿渣棉的调质研究[J].冶金能源,2016,35(2):40-45.
    姚建新,边妙莲.粉煤灰对矿渣棉用调质高炉渣析晶性能的影响[J].科学技术与工程,2019,19(36):388-393.
    李军,张玲玲,赵贵州, 等.高炉熔渣调质制备高酸度系数矿物棉纤维的研究[J].冶金能源,2019,38(3):41-45.
    张良进,龙跃,李智慧, 等.喷吹工艺参数对矿渣棉质量的影响[J].材料与冶金学报,2016,15(1):20-24

    ,32.
    唐续龙,张梅,郭敏,等. 基于熔渣结构的多元渣系黏度模型[J]. 工程科学学报, 2020,42(9):1149-1156.
    彭苏宁, 刘庆云. 粉煤灰纤维棉及其制品的开发, 粉煤灰综合利用, 1999,13(1):44-47.
    MILITKY J, KOVACIC V. Ultimate mechanical properties of basalt filaments[J]. Text Research Journal, 1996, 66:225-229.
  • Relative Articles

    [1]LIU Xirong, DONG Zhen, LI Fayu, CAI Lijie, SUN Lin, LI Pengpeng. ECOLOGICAL MONITORING AND EVALUATION OF THE YELLOW RIVER DELTA BASED ON HIGH-RESOLUTION REMOTE SENSING DATA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 9-16. doi: 10.13205/j.hjgc.202306002
    [2]WANG Lei, YU Kun, CHEN Hui, MAO Zhekai, ZHANG Lingqin, XU Yuntao. APPLICATION OF UNMANNED INSPECTION IN WATER SUPPLY PIPELINE NETWORK BASED ON THE FUSION OF FIBER OPTIC SENSING AND VIDEO AI TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 59-63. doi: 10.13205/j.hjgc.202311010
    [3]LU Youhao, YANG Fan, ZHANG Xi, SUN Songhua, PANG Xiaobing. APPLICATION OF CO2 DETECTOR BASED ON SENSORS IN CO2 FLUX DETECTION OF RESERVOIRS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 45-50,68. doi: 10.13205/j.hjgc.202310007
    [4]SUN Yao, LI Xiaojing, LI Junqi, WANG Wenliang, XUE Chonghua, WANG Jianlong, WANG Wenhai. DISCUSSION ON EXISTING PROBLEMS AND COUNTERMEASURES IN SPONGE CITY MONITORING AND EVALUATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 182-187. doi: 10.13205/j.hjgc.202204026
    [5]DU Xiaoli, CHI Zhongwen, YIN Zijie, ZHAO Meng. ATTENUATION ON CONTROL EFFECT OF HEAVY METALS IN RUNOFF BY PERMEABLE BRICK DURING THE WHOLE PROCESS OF BLOCKAGE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 1-8. doi: DOI:10.13205/j.hjgc.202207001
    [6]HAN Li, ZHANG Qingxia, WANG Jie, QIAN Yong, FANG Jizhong, WU Yang, MA Rui, PAN Jie, MA Li. DESIGN AND DEVELOPMENT OF TRANSFORMER NOISE ONLINE MONITORING SYSTEM BASED ON 5G NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 184-189. doi: 10.13205/j.hjgc.202201027
    [7]LI Jia-wei, LI Meng, LI Ze-feng, ZHANG Zhe, ZHANG Qian. APPLICATION OF OPTICAL FIBER SENSING TECHNOLOGY IN RAINWATER RUNOFF MONITORING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 190-195. doi: 10.13205/j.hjgc.202105027
    [8]LI Jun-qi, ZHANG Shan, LI Xiao-jing, SUN Yao. A STUDY ON THE HARM AND CONTROL COUNTERMEASURES OF THERMAL POLLUTION FROM STORMWATER RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 32-38. doi: 10.13205/j.hjgc.202004007
    [9]ZHANG Qiang, WANG Mei-rong, ZHANG Shu-han, GONG Ying-an, WANG Li-jing, CAO Xiu-qin. DEVELOPMENT OF AN AUTOMATIC SAMPLING TECHNOLOGY FOR URBAN RAINFALL RUNOFF QUALITY MONITORING AND ITS APPLICATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 141-144,150. doi: 10.13205/j.hjgc.202004025
    [10]YIN Ding-kun, CHEN Zheng-xia, YANG Meng-qi, JIA Hai-feng, XU Ke, WANG Teng-xu. EVALUATION OF RUNOFF CONTROL EFFECT IN SPONGE CITY CONSTRUCTION BASED ON ONLINE MONITORING+SIMULATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 151-157. doi: 10.13205/j.hjgc.202004027
    [16]Zhao Bingchen, Huang Junying, Liu Yinlong. DESIGN AND IMPLEMENTATION OF A PM2. 5 ASSISTANT MONITORING SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 140-143. doi: 10.13205/j.hjgc.201505030
  • Cited by

    Periodical cited type(1)

    1. 李春生,张睿哲,蔡瀛淼,周恺,李鸿达,迟兴江. 单档不均匀覆冰分布式光纤传感监测技术. 激光与红外. 2024(12): 1954-1960 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.9 %FULLTEXT: 19.9 %META: 79.9 %META: 79.9 %PDF: 0.2 %PDF: 0.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.0 %其他: 15.0 %其他: 0.2 %其他: 0.2 %China: 0.2 %China: 0.2 %[]: 0.2 %[]: 0.2 %上海: 0.9 %上海: 0.9 %东莞: 0.2 %东莞: 0.2 %临汾: 0.2 %临汾: 0.2 %保定: 0.5 %保定: 0.5 %信阳: 0.2 %信阳: 0.2 %北京: 0.9 %北京: 0.9 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %南通: 0.9 %南通: 0.9 %台州: 0.2 %台州: 0.2 %嘉兴: 0.7 %嘉兴: 0.7 %天津: 1.4 %天津: 1.4 %宣城: 0.2 %宣城: 0.2 %常德: 0.2 %常德: 0.2 %广州: 1.9 %广州: 1.9 %弗吉: 0.2 %弗吉: 0.2 %张家口: 0.5 %张家口: 0.5 %成都: 0.5 %成都: 0.5 %扬州: 1.2 %扬州: 1.2 %昆明: 0.2 %昆明: 0.2 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.2 %朝阳: 0.2 %杭州: 2.3 %杭州: 2.3 %武汉: 0.9 %武汉: 0.9 %济源: 0.2 %济源: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.2 %温州: 0.2 %湖州: 0.9 %湖州: 0.9 %漯河: 4.9 %漯河: 4.9 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.5 %福州: 0.5 %芒廷维尤: 52.8 %芒廷维尤: 52.8 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 1.2 %苏州: 1.2 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.7 %衢州: 0.7 %西宁: 1.4 %西宁: 1.4 %西安: 0.2 %西安: 0.2 %贵阳: 0.5 %贵阳: 0.5 %运城: 1.9 %运城: 1.9 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.9 %郑州: 0.9 %重庆: 0.2 %重庆: 0.2 %金华: 0.2 %金华: 0.2 %长沙: 0.7 %长沙: 0.7 %其他其他China[]上海东莞临汾保定信阳北京十堰南京南通台州嘉兴天津宣城常德广州弗吉张家口成都扬州昆明晋城朝阳杭州武汉济源深圳温州湖州漯河石家庄福州芒廷维尤芝加哥苏州衡阳衢州西宁西安贵阳运城遵义邯郸郑州重庆金华长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (209) PDF downloads(6) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return